Moisture and solvent responsive cellulose/SiO2 nanocomposite materials

被引:26
作者
He, Meng [1 ,2 ]
Duan, Bo [1 ]
Xu, Dingfeng [1 ]
Zhang, Lina [1 ]
机构
[1] Wuhan Univ, Dept Chem, Wuhan 430072, Peoples R China
[2] Yancheng Inst Technol, Jiangsu Prov Key Lab Ecoenvironm Mat, Yancheng 224051, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 国家自然科学基金重大项目;
关键词
SiO2; Cellulose nanocomposites; Water responsive; Moisture detection; Smart film; POLYMER; HYDROGEL; NANO-SIO2; SIO2;
D O I
10.1007/s10570-014-0527-5
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Water responsive SiO2/cellulose nanocomposite hydrogels and films were constructed, for the first time, by dispersing SiO2 nanoparticles into cellulose solution in LiOH/urea solvent, and then by crosslinking with epichlorohydrin or regeneration in coagulation bath, respectively. The cellulose nanocomposite materials were characterized by Field emission scanning electron microscopy, FTIR, dynamic rheology, wide angle X-ray diffraction and mechanical test. The SiO2/cellulose nanocomposites at wet state or in water displayed unique behaviors, showing higher light transmittance than those before contacting with water. The results revealed that strong hydrogen-bonding interaction among water, cellulose and SiO2 led the good dispersion of SiO2 nanoparticles in the cellulose matrix. The incorporation of SiO2 nanoparticles improved the transmittance and mechanical strength of the cellulose hydrogels, and also enhanced the mechanical strength of the films. Especially, the cellulose/SiO2 nanocomposite films were milky at dry state, and changed to transparent after being soaked in water, different from the cellulose film without the SiO2 nanoparticles. In our findings, SiO2 and cellulose with water could form strong hydrogen bonding to create a homogenous network structure. The cellulose/SiO2 composite as a smart material exhibited moisture and solvent responsiveness, showing potential applications in moisture detection.
引用
收藏
页码:553 / 563
页数:11
相关论文
共 34 条
[1]   Stimuli responsive polymers for biomedical applications [J].
Alarcón, CDH ;
Pennadam, S ;
Alexander, C .
CHEMICAL SOCIETY REVIEWS, 2005, 34 (03) :276-285
[2]   Transparent alumina: A light-scattering model [J].
Apetz, R ;
van Bruggen, MPB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2003, 86 (03) :480-486
[3]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110
[4]   Cellulose aerogels from aqueous alkali hydroxide-urea solution [J].
Cai, Jie ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
CHEMSUSCHEM, 2008, 1 (1-2) :149-154
[5]   Dilute solution properties of cellulose in LiOH/urea aqueous system [J].
Cai, Jie ;
Liu, Yating ;
Zhang, Lina .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (21) :3093-3101
[6]   Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells [J].
Chen, Dehong ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Caruso, Rachel A. .
ADVANCED MATERIALS, 2009, 21 (21) :2206-+
[7]   Synthesis of raspberry-like PMMA/SiO2 nanocomposite particles via a surfactant-free method [J].
Chen, M ;
Wu, LM ;
Zhou, SX ;
You, B .
MACROMOLECULES, 2004, 37 (25) :9613-9619
[8]   Giant Moisture Responsiveness of VS2 Ultrathin Nanosheets for Novel Touchless Positioning Interface [J].
Feng, Jun ;
Peng, Lele ;
Wu, Changzheng ;
Sun, Xu ;
Hu, Shuanglin ;
Lin, Chenwen ;
Dai, Jun ;
Yang, Jinlong ;
Xie, Yi .
ADVANCED MATERIALS, 2012, 24 (15) :1969-1974
[9]   Idealized powder diffraction patterns for cellulose polymorphs [J].
French, Alfred D. .
CELLULOSE, 2014, 21 (02) :885-896
[10]   Stimulus-responsive emulsifiers based on nanocomposite microgel particles [J].
Fujii, S ;
Read, ES ;
Binks, BP ;
Armes, SP .
ADVANCED MATERIALS, 2005, 17 (08) :1014-+