Multifractal analysis of continuous functions

被引:28
作者
Olivier, E [1 ]
机构
[1] Ctr Math & Informat, Equipe DSA IML, F-13543 Marseille 13, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 10期
关键词
D O I
10.1016/S0764-4442(98)80221-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the symbolic dynamic on a finite alphabet, the pressure of Walters allows the study of the multifractal analysis of continuous functions. The results obtained link lip lai-ge deviation theory and apply to the classic multifractal analysis of a large class of ergodic measures not necessarilly homogeneous called g-measures and for which some phase transitions may occur. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1171 / 1174
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 1960, ILLINOIS J MATH
[2]  
BARREIRA L, IN PRESS MULTIFRACTA
[3]  
BILLINGSLEY P, 1975, ERGODIC THEORIE INFO
[4]  
BOWEN R, 1975, SLN, V470
[5]   NONUNIQUENESS IN G-FUNCTIONS [J].
BRAMSON, M ;
KALIKOW, S .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 84 (1-2) :153-160
[6]   ON THE MULTIFRACTAL ANALYSIS OF MEASURES [J].
BROWN, G ;
MICHON, G ;
PEYRIERE, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :775-790
[7]   EXAMPLES FOR NONUNIQUENESS OF EQUILIBRIUM STATE [J].
HOFBAUER, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 228 (APR) :223-241
[8]   STRONGLY MIXING G-MEASURES [J].
KEANE, M .
INVENTIONES MATHEMATICAE, 1972, 16 (04) :309-&
[9]  
MICHON G, 1989, CR ACAD SCI I-MATH, V308, P315
[10]  
OLIVIER E, 1997, THESIS U PROVENCE