A bound for the Waring rank of the determinant via syzygies

被引:4
作者
Boij, Mats [1 ]
Teitler, Zach [2 ]
机构
[1] KTH Royal Inst Technol, SE-10044 Stockholm, Sweden
[2] Boise State Univ, Dept Math, 1910 Univ Dr, Boise, ID 83725 USA
基金
瑞典研究理事会;
关键词
Waring rank; Symmetric rank; Symmetric cactus rank; Determinants; Permanents; Syzygies; POWER SUM DECOMPOSITIONS; APOLARITY; EQUATIONS;
D O I
10.1016/j.laa.2019.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Waring rank of the 3 x 3 determinant, previously known to be between 14 and 18, is at least 15. We use syzygies of the apolar ideal, which have not been used in this way before. Additionally, we show that the symmetric cactus rank of the 3 x 3 permanent is at least 14. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 214
页数:20
相关论文
共 50 条
[11]   Apolarity and Direct Sum Decomposability of Polynomials [J].
Buczynska, Weronika ;
Buczynski, Jaroslaw ;
Kleppe, Johannes ;
Teitler, Zach .
MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (04) :675-719
[12]   ON DIFFERENCES BETWEEN THE BORDER RANK AND THE SMOOTHABLE RANK OF A POLYNOMIAL [J].
Buczynska, Weronika ;
Buczynski, Jaroslaw .
GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (02) :401-413
[13]   SECANT VARIETIES TO HIGH DEGREE VERONESE REEMBEDDINGS, CATALECTICANT MATRICES AND SMOOTHABLE GORENSTEIN SCHEMES [J].
Buczynska, Weronika ;
Buczynski, Jaroslaw .
JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (01) :63-90
[14]   Waring decompositions of monomials [J].
Buczynska, Weronika ;
Buczynski, Jaroslaw ;
Teitler, Zach .
JOURNAL OF ALGEBRA, 2013, 378 :45-57
[15]  
Carlini, 2014, SPRINGER P MATH STAT, V76, P101, DOI DOI 10.1007/978-1-4939-0626-0
[16]   Reducing the number of variables of a polynomial [J].
Carlini, Enrico .
ALGEBRAIC GEOMETRY AND GEOMETRIC MODELING, 2006, :237-247
[17]   Real and complex Waring rank of reducible cubic forms [J].
Carlini, Enrico ;
Ventura, Emanuele ;
Guo, Cheng .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (11) :3692-3701
[18]   The solution to the Waring problem for monomials and the sum of coprime monomials [J].
Carlini, Enrico ;
Catalisano, Maria Virginia ;
Geramita, Anthony V. .
JOURNAL OF ALGEBRA, 2012, 370 :5-14
[19]   Irreducibility of the Gorenstein loci of Hilbert schemes via ray families [J].
Casnati, Gianfranco ;
Jelisiejew, Joachim ;
Notari, Roberto .
ALGEBRA & NUMBER THEORY, 2015, 9 (07) :1525-1570
[20]  
Conner Austin, 2019, ARXIV190904785CSCC