A convergence result for an iterative method for the equations of a stationary quasi-Newtonian flow with temperature dependent viscosity

被引:0
|
作者
Wardi, S [1 ]
机构
[1] Univ Mohamed Ben Abdellah, Fac Sci Fes Dhar Mehraz, Dept Math & Informat, Fes Atlas, Morocco
来源
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1998年 / 32卷 / 04期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a system of equations describing the stationary and incompressible flow of a quasi-Newtonian fluid with temperature dependent viscosity and with a viscous heating. An algorithm wich decouples the calculation of the temperature T and the velocity and the pressure (v, p) is presented. It consists in solving iteratively a problem with a nonlinear Stokes's operator for v and p and the Poisson's equation with right-hand side in L-1 for T. We prove, using the method of pseudomonotonicity and under a regularity assumption of Meyers type that the mapping defined by this scheme is a contraction for sufficiently small data. (C) Elsevier; Paris.
引用
收藏
页码:391 / 404
页数:14
相关论文
共 44 条