Mechanical, morphological, and thermal properties of rigid polyurethane foams blown by distilled water

被引:85
作者
Seo, WJ
Jung, HC
Hyun, JC
Kim, WN
Lee, YB
Choe, KH
Kim, SB [1 ]
机构
[1] Korea Univ, Appl Rheol Ctr, Dept Chem Engn, Seoul 136701, South Korea
[2] Korea Gas Corp, R&D Ctr, Inchon 406130, South Korea
[3] Kyonggi Univ, Dept Chem Engn, Suwon 442760, South Korea
关键词
rigid polyurethane foam; density; glass-transition temperature; morphology; mechanical property;
D O I
10.1002/app.12238
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Rigid polyurethane foams (PUFs) were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI), polyether polyol, 1,4-butanediol, silicone surfactant, and distilled water. The properties of the synthesized PUF samples were investigated with differential scanning calorimetry, scanning electron microscopy, and a Universal testing machine. The density of the PUF was decreased from 173.7 to 41.7 kg /m(3) with an increase in distilled water from 0.5 to 3.0 parts per hundred polyol by weight (php), respectively, with 0 php butanediol. The cell size of the PUF sample increased from 115 to 258 gm with an increase in distilled water from 0.5 to 3.0 php, respectively, with 10 php butanediol. From the results of the thermal analysis of the PUF sample, it was found that the glass-transition temperatures of the PUF samples were increased from 49.5 to 80.8degreesC with an increase in distilled water from 0.5 to 3.0 php, respectively, with 0 php butanediol. The results of the investigation of the mechanical properties of the PUF samples showed that the mechanical strength of the PUF samples was increased with the distilled water at equal density. The surfactant effect on the properties of the PUF was studied, and it was observed that the cell size of the PUF samples decreased from 360 to 146 mum with an increase in surfactant from 0 to 0.33 php, respectively. However, the cell size did not change significantly when the surfactant exceeded 0.33 php. The increase of the mechanical strength from 0 to 0.33 php surfactant was attributed to the decrease of the cell size of the PUF samples, and the decrease of the mechanical strength with more than 0.33 php surfactant might be due to the plasticized effect of the PUF samples. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 21 条
[1]   MODELING OF THE DYNAMICS OF WATER AND R-11 BLOWN POLYURETHANE FOAM FORMATION [J].
BASER, SA ;
KHAKHAR, DV .
POLYMER ENGINEERING AND SCIENCE, 1994, 34 (08) :642-649
[2]   EMPLOYMENT OF ZERO ODP BLOWING AGENTS FOR POLYURETHANE RIGID FOAMS FOR THERMAL INSULATION [J].
CECCHINI, C ;
CANCELLIER, V ;
CELLAROSI, B .
JOURNAL OF CELLULAR PLASTICS, 1995, 31 (01) :8-23
[3]  
Fox T. G., 1956, B AM PHYS SOC, V1, P123
[4]  
FRISCH KC, 1976, PLASTIC FOAMS
[5]   MODELING THE MECHANICAL-BEHAVIOR OF CELLULAR MATERIALS [J].
GIBSON, LJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 110 :1-36
[6]  
Goods SH, 1999, J APPL POLYM SCI, V74, P2724, DOI 10.1002/(SICI)1097-4628(19991209)74:11<2724::AID-APP20>3.0.CO
[7]  
2-1
[8]   SILICONE SURFACTANTS FOR PENTANE BLOWN RIGID FOAM [J].
GRIMMINGER, J ;
MUHA, K .
JOURNAL OF CELLULAR PLASTICS, 1995, 31 (01) :48-72
[9]   Properties of rigid polyurethane foams blown by HCFC141B and distilled water [J].
Jung, HC ;
Ryu, SC ;
Kim, WN ;
Lee, YB ;
Choe, KH ;
Kim, SB .
JOURNAL OF APPLIED POLYMER SCIENCE, 2001, 81 (02) :486-493
[10]  
Jung HC, 2000, J APPL POLYM SCI, V78, P624, DOI 10.1002/1097-4628(20001017)78:3<624::AID-APP180>3.0.CO