Commutative Monoid Formalism for Weighted Coupled Cell Networks and Invariant Synchrony Patterns

被引:2
作者
Sequeira, Pedro M. [1 ]
Aguiar, Antonio P. [1 ]
Hespanha, Joao [2 ]
机构
[1] Univ Porto, Fac Engn, P-4200465 Porto, Portugal
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
coupled cell networks; synchrony; balanced partitions; COMPLEX NETWORKS; OSCILLATORS; DYNAMICS;
D O I
10.1137/20M1387109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a framework based on matrices of monoids for the study of coupled cell networks. We formally prove within the proposed framework, that the set of results about invariant synchrony patterns for unweighted networks also holds for the weighted case. Moreover, the approach described allows us to reason about any multiedge and multiedge-type network as if it was single edge and single-edge-type. Several examples illustrate the concepts described. Additionally, an improvement of the coarsest invariant refinement algorithm to find balanced partitions is presented that exhibits a worst-case complexity of O(vertical bar C vertical bar(3)), where C denotes the set of cells.
引用
收藏
页码:1485 / 1513
页数:29
相关论文
共 16 条
  • [1] A polynomial time algorithm to determine maximal balanced equivalence relations
    Aldis, John W.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (02): : 407 - 427
  • [2] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [3] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [4] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [5] Synchronization in complex networks of phase oscillators: A survey
    Doerfler, Florian
    Bullo, Francesco
    [J]. AUTOMATICA, 2014, 50 (06) : 1539 - 1564
  • [6] Patterns of synchrony in coupled cell networks with multiple arrows
    Golubitsky, M
    Stewart, I
    Török, A
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (01): : 78 - 100
  • [7] Nonlinear dynamics of networks: The groupoid formalism
    Golubitsky, Martin
    Stewart, Ian
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 43 (03) : 305 - 364
  • [8] Network motifs: Simple building blocks of complex networks
    Milo, R
    Shen-Orr, S
    Itzkovitz, S
    Kashtan, N
    Chklovskii, D
    Alon, U
    [J]. SCIENCE, 2002, 298 (5594) : 824 - 827
  • [9] Invariant Synchrony Subspaces of Sets of Matrices
    Neuberger, John M.
    Sieben, Nandor
    Swift, James W.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (02) : 964 - 993
  • [10] The structure and function of complex networks
    Newman, MEJ
    [J]. SIAM REVIEW, 2003, 45 (02) : 167 - 256