WELL-POSEDNESS FOR THE FOURTH-ORDER SCHRODINGER EQUATIONS WITH QUADRATIC NONLINEARITY

被引:0
作者
Zheng, Jiqiang [1 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
CAUCHY-PROBLEM; DISPERSIVE EQUATIONS; REGULARITY; FORMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with one-dimensional quadratic semilinear fourth-order Schrodinger equations. Motivated by the quadratic Schrodinger equations in the pioneering work of Kenig-Ponce-Vega [12], three bilinearities uv, (uv) over bar, and (uv) over bar for functions u, v : R x [0,T] -> C are sharply estimated in function spaces X(s,b) associated to the fourth-order Schrodinger operator i partial derivative(t) + Delta(2) - epsilon Delta. These bilinear estimates imply local wellposedness results for fourth-order Schrodinger equations with quadratic nonlinearity. To establish these bilinear estimates, we derive a fundamental estimate on dyadic blocks for the fourth-order Schrodinger from the [k, Z]-multiplier norm argument of Tao [20].
引用
收藏
页码:467 / 486
页数:20
相关论文
共 22 条
[2]   Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation [J].
Bejenaru, I ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :228-259
[3]   Low regularity solutions for a 2D quadratic nonlinear Schrodinger equation [J].
Bejenaru, Ioan ;
De Silva, Daniela .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) :5805-5830
[4]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[5]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[6]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[7]   Bilinear estimates and applications to 2D NLS [J].
Colliander, JE ;
Delort, JM ;
Kenig, CE ;
Staffilani, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (08) :3307-3325
[8]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462
[9]   Stability of solitons described by nonlinear Schrodinger-type equations with higher-order dispersion [J].
Karpman, VI ;
Shagalov, AG .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 144 (1-2) :194-210
[10]   Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrodinger-type equations [J].
Karpman, VI .
PHYSICAL REVIEW E, 1996, 53 (02) :R1336-R1339