Transcription Factors as Tools to Engineer Enhanced Drought Stress Tolerance in Plants

被引:147
|
作者
Hussain, Syed Sarfraz [1 ]
Kayani, Mahmood Akhtar [2 ]
Amjad, Muhammad [3 ]
机构
[1] Univ Bonn, Inst Mol Physiol & Biotechnol Plants IMBIO Bartel, D-53115 Bonn, Germany
[2] COMSATS Inst Informat Technol CIIT, Dept Biosci, Islamabad 44000, Pakistan
[3] Univ Agr Faisalabad, Inst Hort Sci, Faisalabad 38040, Pakistan
关键词
transcription factors; abiotic stress; transgenic plants; metabolic engineering; RESPONSIVE GENE-EXPRESSION; ELEMENT-BINDING FACTOR; ZINC-FINGER PROTEIN; ABSCISIC-ACID; OVER-EXPRESSION; FUNCTIONAL-ANALYSIS; ARABIDOPSIS-THALIANA; LOW-TEMPERATURE; ABIOTIC STRESS; TRANSGENIC PLANTS;
D O I
10.1002/btpr.514
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Plant growth and productivity are greatly affected by abiotic stresses such as drought, salinity, and temperature. Drought stress is one of the major limitations to crop productivity worldwide due to its multigene nature, making the production of transgenic crops a challenging prospect. To develop crop plant with enhanced tolerance of drought stress, a basic understanding of physiological, biochemical, and gene regulatory networks is essential. In the signal transduction network that leads from the perception of stress signals to the expression of stress-responsive genes, transcription factors (TFs) play an essential role. Because TFs, as opposed to most structural genes, tend to control multiple pathways steps, they have emerged as powerful tools for the manipulation of complex metabolic pathways in plants. One such class of TFs is DREB/CBF that binds to drought responsive cis-acting elements. Transgenic plants have been developed with enhanced stress tolerance by manipulating the expression of DREB/CBF. Recently the functions of an increasing number of plant TFs are being elucidated and increased understanding of these factors in controlling drought stress response has lead to practical approaches for engineering stress tolerance in plants. The utility of the various TFs in plant stress research we review is illustrated by several published examples. The manipulation of native plant regularity networks therefore represents a new era for genetically modified crops. This review focuses on the recent understanding, latest advancements related to TFs and present status of their deployment in developing stress tolerant transgenic plants. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 297-306, 2011
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [41] The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants
    van Beek, Coenraad R.
    Guzha, Tapiwa
    Kopana, Nolusindiso
    van der Westhuizen, Cornelius S.
    Panda, Sanjib K.
    van der Vyver, Christell
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2021, 27 (05) : 907 - 921
  • [42] The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants
    Coenraad R. van Beek
    Tapiwa Guzha
    Nolusindiso Kopana
    Cornelius S. van der Westhuizen
    Sanjib K. Panda
    Christell van der Vyver
    Physiology and Molecular Biology of Plants, 2021, 27 : 907 - 921
  • [43] Meta-analysis reveals key features of the improved drought tolerance of plants overexpressing NAC transcription factors
    Figueroa, Nicolas
    Lodeyro, Anabella F.
    Carrillo, Nestor
    Gomez, Rodrigo
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 186
  • [44] Modulating Rice Stress Tolerance by Transcription Factors
    Khong, Giang N.
    Richaud, Frederique
    Coudert, Yoan
    Pati, Pratap K.
    Santi, Carole
    Perin, Christophe
    Breitler, Jean-Christophe
    Meynard, Donaldo
    Vinh, Do N.
    Guiderdoni, Emmanuel
    Gantet, Pascal
    BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, VOL 25, 2008, 25 : 381 - 403
  • [45] Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network
    Golldack, Dortje
    Lueking, Ines
    Yang, Oksoon
    PLANT CELL REPORTS, 2011, 30 (08) : 1383 - 1391
  • [46] Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network
    Dortje Golldack
    Ines Lüking
    Oksoon Yang
    Plant Cell Reports, 2011, 30 : 1383 - 1391
  • [47] Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants
    Kumar, Manoj
    Kumar Patel, Manish
    Kumar, Navin
    Bajpai, Atal Bihari
    Siddique, Kadambot H. M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)
  • [48] Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants
    Nguyen, Nguyen Hoai
    Vu, Nam Tuan
    Cheong, Jong-Joo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [49] Secondary metabolites in the drought stress tolerance of crop plants: A review
    Yadav, Bindu
    Jogawat, Abhimanyu
    Rahman, Md Samiur
    Narayan, Om Prakash
    GENE REPORTS, 2021, 23
  • [50] NEMATODE TOLERANCE INCREASES DROUGHT STRESS IN YOUNG OAT PLANTS
    VOLKMAR, KM
    NEMATOLOGICA, 1991, 37 (03): : 304 - 311