Discrete spectrum of an elliptic periodic differential operator perturbed by a differential operator with decaying coefficient

被引:2
作者
Dimassi, M [1 ]
机构
[1] Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 10期
关键词
D O I
10.1016/S0764-4442(98)80223-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the discrete spectrum arising in the spectral gaps of an elliptic periodic differential operator; P, perturbed by a differential operator, Q, with decaying coefficient. In the semi-classical regime (Q = Q(h), h SE arrow 0) (resp. the large-coupling constant: Q = lambda Q, lambda --> +infinity), we obtain an asymptotic expansion in powers of IL (resp. lambda) of trf(P + Q(h)) (resp. trf(P + lambda Q)) and we give explicitly the lending term. Here f is an element of C-o(infinity)(I) where I is an interval disjoint from the spectrum of P. We apply these results to study the asymptotic distribution of eigenvalues. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1181 / 1184
页数:4
相关论文
共 50 条
[41]   DISCRETE SPECTRUM OF PERTURBED DIFFERENTIAL OPERATORS OF ARBITRARY ORDER WITH PERIODIC MATRIX COEFFICIENTS [J].
KHRABUSTOVSKII, VI .
MATHEMATICAL NOTES, 1977, 21 (5-6) :467-472
[42]   Spectral expansion for a nonselfadjoint periodic differential operator [J].
Veliev, O. A. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2006, 13 (01) :101-110
[43]   PERIODIC SINGULAR PROBLEM WITH QUASILINEAR DIFFERENTIAL OPERATOR [J].
Rachunkova, Irena ;
Tvrdy, Milan .
MATHEMATICA BOHEMICA, 2006, 131 (03) :321-336
[44]   Spectral expansion for a nonselfadjoint periodic differential operator [J].
O. A. Veliev .
Russian Journal of Mathematical Physics, 2006, 13 :101-110
[45]   On the spectrum of the monodromy operator for slowly oscillating periodic solutions to functional differential equations [J].
Walther, HO ;
Skubachevskii, AL .
DOKLADY MATHEMATICS, 2002, 65 (03) :382-385
[46]   Asymptotics of the spectrum of a periodic boundary value problem for a differential operator with a summable potential [J].
Mitrokhin, S., I .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (01) :136-149
[47]   Moments of Discrete Distributions via a Differential Operator [J].
Murat M. ;
Szynal D. .
Journal of Mathematical Sciences, 2013, 191 (4) :568-581
[48]   Discrete spectrum of the Schrodinger operator perturbed by a narrowly supported potential [J].
Bikmetov, AR ;
Borisov, DI .
THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 145 (03) :1691-1702
[49]   ON THE DISCRETE SPECTRUM OF A PERTURBED WIENER-HOPF INTEGRAL OPERATOR [J].
KOZHUKHAR, PA .
MATHEMATICAL NOTES, 1992, 51 (1-2) :66-73
[50]   The Discrete Spectrum of the Laplace Operator in a Cylinder with Locally Perturbed Boundary [J].
A. L. Delitsyn .
Differential Equations, 2004, 40 :207-217