On a model of rotating superfluids

被引:23
作者
Serfaty, S [1 ]
机构
[1] Ecole Normale Super, CMLA, F-94235 Cachan, France
关键词
vortices; Gross-Pitaevskii equations; superfluids;
D O I
10.1051/cocv:2001108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider an energy-functional describing rotating super fluids at a rotating velocity w, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical w above which energy-minimizers have vortices, evaluations of the minimal energy as a function of w, and the derivation of a limiting free-boundary problem.
引用
收藏
页码:201 / 238
页数:38
相关论文
共 14 条
[1]   Topological methods for the Ginzburg-Landau equations [J].
Almeida, L ;
Bethuel, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01) :1-49
[2]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[3]   Predicted signatures of rotating Bose-Einstein condensates [J].
Butts, DA ;
Rokhsar, DS .
NATURE, 1999, 397 (6717) :327-329
[4]   Bose-Einstein condensates with vortices in rotating traps [J].
Castin, Y ;
Dum, R .
EUROPEAN PHYSICAL JOURNAL D, 1999, 7 (03) :399-412
[5]   Ginzburg-Landau type energy with discontinuous constraint [J].
Lassoued, L ;
Mironescu, P .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 77 (1) :1-26
[6]   A rigorous derivation of a free-boundary problem arising in superconductivity [J].
Sandier, É ;
Serfaty, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (04) :561-592
[7]   Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field [J].
Sandier, E ;
Serfaty, S .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (01) :119-145
[8]  
Serfaty S, 1999, COMMUN CONTEMP MATH, V1, P295, DOI 10.1142/S0219199799000134
[9]   Stable configurations in superconductivity: Uniqueness, multiplicity, and vortex-nucleation [J].
Serfaty, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 149 (04) :329-365
[10]  
[No title captured]