Orthogonal polynomials on arcs of the unit circle, 1

被引:17
作者
Peherstorfer, F
Steinbauer, R
机构
[1] Johannes Kepler Univ. Linz, Institut für Mathematik
关键词
D O I
10.1006/jath.1996.0035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E(1)=boolean OR(j=1)(1) [phi(2j-1), phi(2j)]subset of or equal to[0, 2 pi], R(phi)=Pi(j=1)(21) sin((phi-phi(j))/2) and 1/r(phi)=(-1)(j)/root\R(phi)\ for phi is an element of(phi(2j-1), phi(2j)). Furthermore let V, W be arbitrary real trigonometric polynomials such that R = V W and let A(phi) be a real trigonometric polynomial which has no zero in E(1). First we derive an explicit representation of the Caratheodory function associated with f(phi;W) = W(phi/A(phi) r(phi) on E(1). With the help of this result the polnomials (P-n(z), which are orthogonal on the set of arcs Gamma(E1): = {e(i phi):phi is an element of E(1)} with respect to f(phi; W), are completely characterized by a quadratic equation. (In fact a more general case including Dirac-mass points is considered.) This characterization is the basis of ail of our further investigations on polynomials orthogonal on several arcs as the description of that measures which generate orthogonal polynomials with periodic or asymptotically periodic reflection coefficients, the explicit representation of the orthogonality measure of the associated polynomials, the asymptotic representation of polynomials orthogonal on Gamma(E1), etc. (C) 1996 Academic Press, Inc.
引用
收藏
页码:140 / 184
页数:45
相关论文
共 32 条
[1]  
Akhiezer N.I, 1960, Sov. Math. Dokl., V1, P31
[2]  
Akhiezer N.I., 1960, Sov. Math., V1, P989
[3]  
AKHIEZER NI, 1961, SOV MATH DOKL, V2, P687
[4]  
[Anonymous], C R DOKLADY ACAD SCI
[5]  
BERNSTEIN SN, 1930, COMM KHARKOV MATH SO, V4, P79
[6]   DENSITY OF STATES FROM MOMENTS - APPLICATION TO IMPURITY BAND [J].
GASPARD, JP ;
CYROTLAC.F .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (21) :3077-3096
[7]   ORTHOGONAL POLYNOMIALS WITH ASYMPTOTICALLY PERIODIC RECURRENCE COEFFICIENTS [J].
GERONIMO, JS ;
VANASSCHE, W .
JOURNAL OF APPROXIMATION THEORY, 1986, 46 (03) :251-283
[8]   ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS VIA A POLYNOMIAL MAPPING [J].
GERONIMO, JS ;
VANASSCHE, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (02) :559-581
[9]   APPROXIMATING THE WEIGHT FUNCTION FOR ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS [J].
GERONIMO, JS ;
VANASSCHE, W .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (03) :341-371
[10]  
GERONIMUS JL, 1944, MATH USSR SB, V15, P99