A Decentralized Multiple MAV Collision Avoidance Trajectory Planning Method

被引:1
作者
Tong, Baiming [1 ]
Liu, Qingbao [1 ]
Dai, Chaofan [1 ]
Jia, Zhiqiang [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, Changsha, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
关键词
multiple micro air vehicle; trajectory planning; collision avoidance; decentralized; GENERATION;
D O I
10.1109/CAC51589.2020.9326572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a decentralized algorithm for solving combinatorial optimization problems is used to solve the collision avoidance trajectory planning problem of multiple micro air vehicles (MAVs). According to the algorithm, the MAV avoids generating mutual interference trajectories through negotiation with its neighbors. The MAV and its neighbors transfer trajectory schemes to each other, extract track points from them, and construct virtual obstacles at these points. RRT* algorithm is used to generate trajectories to avoid these virtual obstacles to achieve the purpose of collision avoidance. In order to improve the efficiency of conflict resolution, we proposed a method based on the maximum clique algorithm to solidify the trajectory schemes of some MAVs in the system and only modify the trajectory schemes of other MAVs. We tested the effectiveness of the algorithm in a simulation environment and successfully avoided collisions in all tests.
引用
收藏
页码:1545 / 1552
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 2010, ROBOTICS SCI SYSTEMS
[2]  
Augugliaro F, 2012, IEEE INT C INT ROBOT, P1917, DOI 10.1109/IROS.2012.6385823
[3]  
Bähnemann R, 2017, 2017 IEEE INTERNATIONAL SYMPOSIUM ON SAFETY, SECURITY AND RESCUE ROBOTICS (SSRR), P123, DOI 10.1109/SSRR.2017.8088150
[4]   On-board communication-based relative localization for collision avoidance in Micro Air Vehicle teams [J].
Coppola, Mario ;
McGuire, Kimberly N. ;
Scheper, Kirk Y. W. ;
de Croon, Guido C. H. E. .
AUTONOMOUS ROBOTS, 2018, 42 (08) :1787-1805
[5]   Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments [J].
Ferrera, Eduardo ;
Alcantara, Alfonso ;
Capitan, Jesus ;
Castano, Angel R. ;
Marron, Pedro J. ;
Ollero, Anibal .
SENSORS, 2018, 18 (12)
[6]   A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents [J].
Hinrichs, Christian ;
Sonnenschein, Michael .
INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2017, 10 (02) :69-78
[7]  
Krishnan S., 2018, ARXIV181211135
[8]  
Mellinger D, 2012, IEEE INT CONF ROBOT, P477, DOI 10.1109/ICRA.2012.6225009
[9]  
Van Parys R, 2016, 2016 EUROPEAN CONTROL CONFERENCE (ECC), P1580, DOI 10.1109/ECC.2016.7810516
[10]   Collision Avoidance for Multiple UAVs Using Rolling-Horizon Policy [J].
Vera, Santiago ;
Antonio Cobano, Jose ;
Heredia, Guillermo ;
Ollero, Anibal .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 84 (1-4) :387-396