Local first integrals of differential systems and diffeomorphisms

被引:49
作者
Li, WG [1 ]
Llibre, J
Zhang, X
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2003年 / 54卷 / 02期
关键词
differential system; diffeomorphism; local first integral; normal form;
D O I
10.1007/s000330300003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper using theory of linear operators and normal forms we generalize a result of Poincare [11] about the non-existence of local first integrals for systems of differential equations in a neighbourhood of a singular point. As an application of the generalized result, and under more weak conditions we obtain a result of Furta [8] about local first integrals of semi-quasi-homogeneous systems. Moreover, for diffeomorphisms and periodic differential systems we give definitions of their first integrals, and generalize the previous results about systems of differential equations to diffeomorphisms in a neighbourhood of a fixed point and to periodic differential systems in a neighbourhood of a constant solution.
引用
收藏
页码:235 / 255
页数:21
相关论文
共 13 条
[1]  
[Anonymous], 1999, QUAL THEORY DIFF SYS
[2]  
ANOSOV DV, 1988, DYNAMICAL SYSTEMS, V1
[3]  
Arnold VI., 1988, GRUNDLEHREN MATH WIS, Vsecond edn, DOI 10.1007/978-3-662-11832-0
[4]   Darboux method and search of invariants for the Lotka-Volterra and complex quadratic systems [J].
Cairó, L ;
Feix, MR ;
Llibre, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) :2074-2091
[5]   Integrability of the 2D Lotka-Volterra system via polynomial first integrals and polynomial inverse integrating factors [J].
Cairó, L ;
Llibre, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2407-2417
[6]   On the integrability of two-dimensional flows [J].
Chavarriga, J ;
Giacomini, H ;
Giné, J ;
Llibre, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (01) :163-182
[7]  
Chow S. -N., 1994, NORMAL FORMS BIFURCA
[8]   On non-integrability of general systems of differential equations [J].
Furta, SD .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (01) :112-131
[9]   INTEGRALS OF MOTION FOR 3-DIMENSIONAL NON-HAMILTONIAN DYNAMIC-SYSTEMS [J].
GIACOMINI, HJ ;
REPETTO, CE ;
ZANDRON, OP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :4567-4574
[10]  
Kowalevski S., 1889, Acta Math., V12, P177, DOI 10.1007/BF02391879