Reservoir computing with delay in structured networks

被引:0
作者
Roehm, Andre [1 ]
Luedge, Kathy [1 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Sekr EW 7-1,Hardenbergstr 36, D-10623 Berlin, Germany
来源
NEURO-INSPIRED PHOTONIC COMPUTING | 2018年 / 10689卷
关键词
reservoir computing; networks; delay;
D O I
10.1117/12.2307159
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Reservoir computing is a machine-learning scheme that solves computational problems with the power of dynamical systems. In this contribution we investigate and quantitatively compare the two reservoir systems that are predominantly used nowadays: Delay and network models. Additionally, we also investigate hybrid concepts called' multiplexed networks', that incorporate elements of both of these approaches. By constructing reservoir computers with identical numbers of readout dimensions, we can quantitatively compare the performance. We find that the time-multiplexing procedure of the classical delay-approach can be extended to hybrid delay-network systems without loss of computational power, which enables the construction of faster reservoir computers.
引用
收藏
页数:6
相关论文
共 7 条
[1]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[2]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[3]  
Jaeger H., 2001, ECHO STATE APPROACH
[4]   Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing [J].
Larger, L. ;
Soriano, M. C. ;
Brunner, D. ;
Appeltant, L. ;
Gutierrez, J. M. ;
Pesquera, L. ;
Mirasso, C. R. ;
Fischer, I. .
OPTICS EXPRESS, 2012, 20 (03) :3241-3249
[5]   Real-time computing without stable states:: A new framework for neural computation based on perturbations [J].
Maass, W ;
Natschläger, T ;
Markram, H .
NEURAL COMPUTATION, 2002, 14 (11) :2531-2560
[6]  
Rohm A, 2018, RESERVOIR COMPUTING
[7]   Experimental demonstration of reservoir computing on a silicon photonics chip [J].
Vandoorne, Kristof ;
Mechet, Pauline ;
Van Vaerenbergh, Thomas ;
Fiers, Martin ;
Morthier, Geert ;
Verstraeten, David ;
Schrauwen, Benjamin ;
Dambre, Joni ;
Bienstman, Peter .
NATURE COMMUNICATIONS, 2014, 5