Ion Trap with Narrow Aperture Detection Electrodes for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

被引:14
|
作者
Nagornov, Konstantin O. [1 ]
Kozhinov, Anton N. [1 ]
Tsybin, Oleg Y. [2 ]
Tsybin, Yury O. [1 ,3 ]
机构
[1] Ecole Polytech Fed Lausanne, Biomol Mass Spectrometry Lab, CH-1015 Lausanne, Switzerland
[2] State Polytech Univ, Ion Phys Lab, St Petersburg 195251, Russia
[3] Spectroswiss Sarl, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Fourier transform; FT; Fourier transform mass spectrometry; FTMS; Ion cyclotron resonance; ICR; Transient signal; Ion trap; Proteomics; FT-ICR MS; RESOLVING POWER; FINE-STRUCTURE; CELL; RESOLUTION; SPECTRA; DISSOCIATION; EXCITATION; FREQUENCY; PRINCIPLES;
D O I
10.1007/s13361-015-1089-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The current paradigm in ion trap (cell) design for Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the ion detection with wide aperture detection electrodes. Specifically, excitation and detection electrodes are typically 90A degrees wide and positioned radially at a similar distance from the ICR cell axis. Here, we demonstrate that ion detection with narrow aperture detection electrodes (NADEL) positioned radially inward of the cell's axis is feasible and advantageous for FT-ICR MS. We describe design details and performance characteristics of a 10 T FT-ICR MS equipped with a NADEL ICR cell having a pair of narrow aperture (flat) detection electrodes and a pair of standard 90A degrees excitation electrodes. Despite a smaller surface area of the detection electrodes, the sensitivity of the NADEL ICR cell is not reduced attributable to improved excite field distribution, reduced capacitance of the detection electrodes, and their closer positioning to the orbits of excited ions. The performance characteristics of the NADEL ICR cell are comparable with the state-of-the-art FT-ICR MS implementations for small molecule, peptide, protein, and petroleomics analyses. In addition, the NADEL ICR cell's design improves the flexibility of ICR cells and facilitates implementation of advanced capabilities (e.g., quadrupolar ion detection for improved mainstream applications). It also creates an intriguing opportunity for addressing the major bottleneck in FTMS-increasing its throughput via simultaneous acquisition of multiple transients or via generation of periodic non-sinusoidal transient signals.
引用
收藏
页码:741 / 751
页数:11
相关论文
共 50 条
  • [21] Fourier transform ion cyclotron resonance mass spectrometry for food authentication
    Marshall, AG
    Wu, ZG
    Rodgers, RP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U31 - U31
  • [22] Gated trapped ion mobility spectrometry coupled to fourier transform ion cyclotron resonance mass spectrometry
    Ridgeway, Mark E.
    Wolff, Jeremy J.
    Silveira, Joshua A.
    Lin, Cheng
    Costello, Catherine E.
    Park, Melvin A.
    INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY, 2016, 19 (2-3) : 77 - 85
  • [23] Salvation of acylium fragment ions in electrospray ionization quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometry
    Guan, ZQ
    Liesch, JM
    JOURNAL OF MASS SPECTROMETRY, 2001, 36 (03): : 264 - 276
  • [24] A 2-ELECTRODE ION-TRAP FOR FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE MASS-SPECTROMETRY
    MARTO, JA
    MARSHALL, AG
    SCHWEIKHARD, L
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1994, 137 : 9 - 30
  • [26] C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
    Smith, Donald F.
    Robinson, Errol W.
    Tolmachev, Aleksey V.
    Heeren, Ron M. A.
    Pasa-Tolic, Ljiljana
    ANALYTICAL CHEMISTRY, 2011, 83 (24) : 9552 - 9556
  • [27] Determination of ion magnetron radial distribution in Fourier transform ion cyclotron resonance mass spectrometry
    Guan, SH
    Huang, YL
    Xin, TP
    Marshall, AG
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1996, 10 (14) : 1855 - 1859
  • [28] ION OPTICS FOR FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE MASS-SPECTROMETRY
    MARSHALL, AG
    GUAN, SH
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 363 (1-2): : 397 - 405
  • [29] Determination of ion magnetron radial distribution in Fourier transform ion cyclotron resonance mass spectrometry
    Ctr. or Interdisc. Magnetic Reson., Natl. High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahasee, FL 23210, United States
    不详
    RAPID COMMUN. MASS SPECTROM., 14 (1855-1859):
  • [30] Initial implementation of an electrodynamic ion funnel with Fourier transform ion cyclotron resonance mass spectrometry
    Belov, ME
    Gorshkov, MV
    Udseth, HR
    Anderson, GA
    Tolmachev, AV
    Prior, DC
    Harkewicz, R
    Smith, RD
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2000, 11 (01) : 19 - 23