Gauge-Symmetry Protection Using Single-Body Terms

被引:64
作者
Halimeh, Jad C. [1 ,2 ]
Lang, Haifeng [1 ,2 ,3 ]
Mildenberger, Julius [1 ,2 ]
Jiang, Zhang [4 ]
Hauke, Philipp [1 ,2 ]
机构
[1] Univ Trento, INO CNR BEC Ctr, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy
[3] Heidelberg Univ, Theoret Chem, Inst Phys Chem, Neuenheimer Feld 229, D-69120 Heidelberg, Germany
[4] Google AI Quantum, Venice, CA USA
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
基金
欧盟地平线“2020”;
关键词
PERIODICALLY DRIVEN; QUANTUM SIMULATION; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; INVARIANCE; LIGHT; QUTIP;
D O I
10.1103/PRXQuantum.2.040311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum-simulator hardware promises new insights into problems from particle and nuclear physics. A major challenge is to reproduce gauge invariance, as violations of this quintessential property of lattice gauge theories can have dramatic consequences, e.g., the generation of a photon mass in quantum electrodynamics. Here, we introduce an experimentally friendly method to protect gauge invariance in U(1) lattice gauge theories against coherent errors in a controllable way. Our method employs only single-body energy-penalty terms, thus enabling practical implementations. As we derive analytically, some sets of penalty coefficients render undesired gauge sectors inaccessible by unitary dynamics for exponentially long times. Further, for few-body error terms, we show numerically that this is achieved with resources exhibiting little dependence on system size. These findings constitute an exponential improvement over previously known results from energy-gap protection or perturbative treatments. In our method, the gauge-invariant subspace is protected by an emergent global symmetry, meaning it can be immediately applied to other symmetries. In our numerical benchmarks for continuous-time and digital quantum simulations, gauge protection holds for all calculated evolution times (up to t > 10(10)/ J for continuous time, with J the relevant energy scale). Crucially, our gauge-protection technique is simpler to realize than the associated ideal gauge theory, and can thus be readily implemented in current ultracold-atom analog simulators as well as digital noisy intermediate-scale quantum devices.
引用
收藏
页数:19
相关论文
共 75 条
[1]   A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems [J].
Abanin, Dmitry ;
De Roeck, Wojciech ;
Ho, Wen Wei ;
Huveneers, Francois .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (03) :809-827
[2]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[3]  
Aidelsburger M., 2021, ARXIV210603063
[4]   Quantum Computer Systems for Scientific Discovery [J].
Alexeev, Yuri ;
Bacon, Dave ;
Brown, Kenneth R. ;
Calderbank, Robert ;
Carr, Lincoln D. ;
Chong, Frederic T. ;
DeMarco, Brian ;
Englund, Dirk ;
Farhi, Edward ;
Fefferman, Bill ;
Gorshkov, Alexey, V ;
Houck, Andrew ;
Kim, Jungsang ;
Kimmel, Shelby ;
Lange, Michael ;
Lloyd, Seth ;
Lukin, Mikhail D. ;
Maslov, Dmitri ;
Maunz, Peter ;
Monroe, Christopher ;
Preskill, John ;
Roetteler, Martin ;
Savage, Martin J. ;
Thompson, Jeff .
PRX QUANTUM, 2021, 2 (01)
[5]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[6]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[7]  
Banuls M. C., 2019, ARXIV191100003
[8]  
Barros JCP., 2019, ARXIV191106022
[9]   Gauge-invariant implementation of the Abelian-Higgs model on optical lattices [J].
Bazavov, A. ;
Meurice, Y. ;
Tsai, S. -W. ;
Unmuth-Yockey, J. ;
Zhang, Jin .
PHYSICAL REVIEW D, 2015, 92 (07)
[10]   Digital quantum simulation of lattice gauge theories in three spatial dimensions [J].
Bender, Julian ;
Zohar, Erez ;
Farace, Alessandro ;
Cirac, J. Ignacio .
NEW JOURNAL OF PHYSICS, 2018, 20