Convergence of the variational iteration method for solving multi-order fractional differential equations

被引:67
作者
Yang, Shuiping [1 ,2 ]
Xiao, Aiguo [1 ]
Su, Hong [1 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Huizhou Univ, Dept Math, Huizhou 516007, Guangdong, Peoples R China
关键词
Fractional differential equations; Variational iteration method; Convergence; Fractional calculus; NUMERICAL-SOLUTION; INTEGRAL-EQUATIONS; SIMULATION; SYSTEMS; VOLTERRA;
D O I
10.1016/j.camwa.2010.09.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the variational iteration method (VIM) is applied to obtain approximate solutions of multi-order fractional differential equations (M-FDEs). We can easily obtain the satisfying solution just by using a few simple transformations and applying the VIM. A theorem for convergence and error estimates of the VIM for solving M-FDEs is given. Moreover, numerical results show that our theoretical analysis are accurate and the VIM is a powerful method for solving M-FDEs. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2871 / 2879
页数:9
相关论文
共 39 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], 2016, INT J NONLIN SCI NUM, DOI DOI 10.1515/IJNSNS.2006.7.1.27
[3]   FRACTIONAL CALCULUS IN THE TRANSIENT ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1985, 23 (06) :918-925
[4]   Application of variational iteration method to heat-and wave-like equations [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. .
PHYSICS LETTERS A, 2007, 369 (1-2) :55-61
[5]   The multistage variational iteration method for a class of nonlinear system of ODEs [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. ;
Ismail, E. S. .
PHYSICA SCRIPTA, 2007, 76 (04) :388-392
[6]   The numerical simulation for stiff systems of ordinary differential equations [J].
Darvishi, M. T. ;
Khani, F. ;
Soliman, A. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :1055-1063
[7]  
Diethelm K, 2004, J COMPUT ANAL APPL, V6, P243
[8]  
Diethelm K, 2002, BIT, V42, P490
[9]   Numerical solution of fractional order differential equations by extrapolation [J].
Diethelm, K ;
Walz, G .
NUMERICAL ALGORITHMS, 1997, 16 (3-4) :231-253
[10]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22