Equivalence between almost-greedy and semi-greedy bases

被引:13
作者
Berna, P. M. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
Thresholding greedy algorithm; Almost-greedy bases; Semi-greedy bases; ALGORITHM; INEQUALITIES;
D O I
10.1016/j.jmaa.2018.09.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [3] it was proved that almost-greedy and semi-greedy bases are equivalent in the context of Banach spaces with finite cotype. In this paper we show this equivalence for general Banach spaces.(C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 225
页数:8
相关论文
共 8 条
[1]   Lebesgue inequalities for the greedy algorithm in general bases [J].
Berna, Pablo M. ;
Blasco, Oscar ;
Garrigos, Gustavo .
REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (02) :369-392
[2]  
Bernd P. M., WEIGHTED PROPE UNPUB
[3]   Lebesgue constants for the weak greedy algorithm [J].
Dilworth, S. J. ;
Kutzarova, D. ;
Oikhberg, T. .
REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02) :393-409
[4]   On the existence of almost greedy bases in Banach spaces [J].
Dilworth, SJ ;
Kalton, NJ ;
Kutzarova, D .
STUDIA MATHEMATICA, 2003, 159 (01) :67-101
[5]   The thresholding greedy algorithm, greedy bases, and duality [J].
Dilworth, SJ ;
Kalton, NJ ;
Kutzarova, D ;
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) :575-597
[6]   Lebesgue-Type Inequalities for Quasi-greedy Bases [J].
Garrigos, Gustavo ;
Hernandez, Eugenio ;
Oikhberg, Timur .
CONSTRUCTIVE APPROXIMATION, 2013, 38 (03) :447-470
[7]  
Konyagin S.V., 1999, East J. Approx., V5, P365
[8]   Greedy algorithm for general biorthogonal systems [J].
Wojtaszczyk, P .
JOURNAL OF APPROXIMATION THEORY, 2000, 107 (02) :293-314