Macromolecular Ligand Engineering for Programmable Nanoprism Assembly

被引:23
作者
Liu, Yang [1 ]
Klement, Marco [2 ]
Wang, Yi [1 ]
Zhong, Yaxu [1 ]
Zhu, Baixu [1 ]
Chen, Jun [1 ]
Engel, Michael [2 ]
Ye, Xingchen [1 ]
机构
[1] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
[2] Friedrich Alexander Univ Erlangen Nurnberg, Interdisciplinary Ctr Nanostruct Films, Inst Multiscale Simulat, D-91058 Erlangen, Germany
关键词
NANOPARTICLE SUPERLATTICES; COLLOIDAL NANOCRYSTALS; SIMULATIONS; POLYSTYRENE; TEMPERATURE; PATCHINESS; DYNAMICS; SURFACES; BEHAVIOR; ENERGY;
D O I
10.1021/jacs.1c07281
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ligands play a central role for the energetics and kinetics of nanocrystal assembly. Yet, the precise and simultaneous manipulation of ligands to dictate assembly outcome has proven difficult. Here, we present macromolecular ligand-engineering strategies to control, characterize, and model four molecular parameters of grafted polymer chains: chain length, chain dispersity, grafting density, and chain distribution. Direct ligand-exchange between nanoprisms and polymers functionalizes facets selectively and produces patchy nanocrystals. We develop a generalizable two-step ligand-exchange approach for the independent control of the two emergent brush parameters, brush thickness and brush softness. The resultant polymer-grafted prismatic nanocrystals with programmable ligand brushes self-assemble into thin-film superstructures of different wallpaper symmetries and faceted supracrystals. Our experiments are complemented by coarse-grained computer simulations of nanoprisms with directional, facet-specific interactions. This work paves the way for the precision synthesis of polymer-nanocrystal hybrid materials and enables the further refinement of theoretical models for particle brush materials.
引用
收藏
页码:16163 / 16172
页数:10
相关论文
共 54 条
[1]   Mesophase behaviour of polyhedral particles [J].
Agarwal, Umang ;
Escobedo, Fernando A. .
NATURE MATERIALS, 2011, 10 (03) :230-235
[2]   A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study [J].
Ahren, Maria ;
Selegard, Linnea ;
Soderlind, Fredrik ;
Linares, Mathieu ;
Kauczor, Joanna ;
Norman, Patrick ;
Kall, Per-Olov ;
Uvdal, Kajsa .
JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (08)
[3]  
Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/nmat2404, 10.1038/NMAT2404]
[4]   General purpose molecular dynamics simulations fully implemented on graphics processing units [J].
Anderson, Joshua A. ;
Lorenz, Chris D. ;
Travesset, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) :5342-5359
[5]   Nonadditivity of nanoparticle interactions [J].
Batista, Carlos A. Silvera ;
Larson, Ronald G. ;
Kotov, Nicholas A. .
SCIENCE, 2015, 350 (6257) :138-+
[6]   Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice [J].
Boles, Michael A. ;
Talapin, Dmitri V. .
ACS NANO, 2019, 13 (05) :5375-5384
[7]   Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials [J].
Boles, Michael A. ;
Engel, Michael ;
Talapin, Dmitri V. .
CHEMICAL REVIEWS, 2016, 116 (18) :11220-11289
[8]   Characterizing Polymer-Grafted Nanoparticles: From Basic Defining Parameters to Behavior in Solvents and Self-Assembled Structures [J].
Chancellor, Andrew J. ;
Seymour, Bryan T. ;
Zhao, Bin .
ANALYTICAL CHEMISTRY, 2019, 91 (10) :6391-6402
[9]   Perovskite-type superlattices from lead halide perovskite nanocubes [J].
Cherniukh, Ihor ;
Raino, Gabriele ;
Stoeferle, Thilo ;
Burian, Max ;
Travesset, Alex ;
Naumenko, Denys ;
Amenitsch, Heinz ;
Erni, Rolf ;
Mahrt, Rainer F. ;
Bodnarchuk, Maryna I. ;
Kovalenko, Maksym V. .
NATURE, 2021, 593 (7860) :535-+
[10]   Flexible Particle Array Structures by Controlling Polymer Graft Architecture [J].
Choi, Jihoon ;
Dong, Hongchen ;
Matyjaszewski, Krzysztof ;
Bockstaller, Michael R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (36) :12537-12539