Geometric dequantization

被引:34
作者
Abrikosov, AA
Gozzi, E
Mauro, D
机构
[1] Univ Trieste, Dept Theoret Phys, I-34014 Trieste, Italy
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
基金
俄罗斯基础研究基金会;
关键词
geometric quantization; time; operatorial formalisms;
D O I
10.1016/j.aop.2004.12.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dequantization is a set of rules which turn quantum mechanics (QM) into classical mechanics (CM). It is not the WKB limit of QM. In this paper we show that, by extending time to a 3-dimensional "supertime," we can dequantize the system in the sense of turning the Feynman path integral version of QM into the functional counterpart of the Koop-man-von Neumann operatorial approach to CM. Somehow this procedure is the inverse of geometric quantization and we present it in three different polarizations: the Schrodinger, the momentum and the coherent states ones. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:24 / 71
页数:48
相关论文
共 32 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]   Quantization and time [J].
Abrikosov, AA ;
Gozzi, E .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 :369-372
[3]   Time and Geometric Quantization [J].
Abrikosov, AA ;
Gozzi, E ;
Mauro, D .
MODERN PHYSICS LETTERS A, 2003, 18 (33-35) :2347-2354
[4]  
[Anonymous], 1990, INTRO SUPERSYMMETRY
[5]  
DAMGAARD PH, 2004, PHYS LETT B, V578, P223
[6]  
DAS A., 2019, Field Theory: A Path Integral Approach, V83
[7]  
Deotto E, 2003, J MATH PHYS, V44, P5937, DOI 10.1063/1.1623334
[8]   Hilbert space structure in classical mechanics. I [J].
Deotto, E ;
Gozzi, E ;
Mauro, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) :5902-5936
[9]   On the "universal" N=2 supersymmetry of classical mechanics [J].
Deotto, E ;
Gozzi, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (15) :2709-2746
[10]  
DEWITT B, 1987, SUPERMANIFOLDS