3D printing of hydroxyapatite polymer-based composites for bone tissue engineering

被引:65
|
作者
Corcione, Carola Esposito [1 ]
Gervaso, Francesca [1 ]
Scalera, Francesca [1 ]
Montagna, Francesco [1 ]
Maiullaro, Tommaso [1 ]
Sannino, Alessandro [1 ]
Maffezzoli, Alfonso [1 ]
机构
[1] Univ Salento, Dipartimento Ingn Innovaz, Via Monteroni, I-73100 Lecce, Italy
关键词
biomaterials; 3D printing; hydroxyapatite; PLA; BMP-INDUCED OSTEOGENESIS; FREE-FORM FABRICATION; ZRO2 TOUGHENED AL2O3; EPOXY-BASED RESIN; MECHANICAL-PROPERTIES; PHOTOPOLYMERIZATION KINETICS; LASER STEREOLITHOGRAPHY; POROUS HYDROXYAPATITE; SCAFFOLDS; BIOCOMPATIBILITY;
D O I
10.1515/polyeng-2016-0194
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Skeletal defects reconstruction, using custommade substitutes, represents a valid solution to replacing lost and damaged anatomical bone structures, renew their original function, and at the same time, restore the original aesthetic aspect. Rapid prototyping (RP) techniques allow the construction of complex physical models based on 3D clinical images. However, RP machines usually work with synthetic polymers; therefore, producing custom-made scaffolds using a biocompatible material directly by RP is an exciting challenge. The aim of the present work is to investigate the potentiality of 3D printing as a manufacturing method to produce an osteogenic hydroxyapatite polylactic acid bone graft substitute.
引用
收藏
页码:741 / 746
页数:6
相关论文
共 50 条
  • [1] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Barbara Leukers
    Hülya Gülkan
    Stephan H. Irsen
    Stefan Milz
    Carsten Tille
    Matthias Schieker
    Hermann Seitz
    Journal of Materials Science: Materials in Medicine, 2005, 16 : 1121 - 1124
  • [2] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Leukers, B
    Gülkan, H
    Irsen, SH
    Milz, S
    Tille, C
    Schieker, M
    Seitz, H
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (12) : 1121 - 1124
  • [3] Advancements in 3D-4D printing of hydroxyapatite composites for bone tissue engineering
    Chopra, Vianni
    Fuentes-Velasco, Valeria
    Nacif-Lopez, Samyr R.
    Melendez-Malpicca, Juliette
    Mendez-Hernandez, Ana S.
    Ramos-Mendez-Iris, Luis F.
    Arroyo-Jimenez, Denev A.
    Reyes-Segura, Diana G.
    Gonzalez-Y-Mendoza, Pamela
    Sanchez-Hernandez, K. Aline
    Spinola-Corona, Estefania
    Vazquez-del-Mercado-Pardino, Jorge A.
    Chauhan, Gaurav
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 38819 - 38840
  • [4] Hydroxyapatite based for bone tissue engineering: innovation and new insights in 3D printing technology
    Fendi Fendi
    Bualkar Abdullah
    Sri Suryani
    Indah Raya
    Dahlang Tahir
    Iswahyudi Iswahyudi
    Polymer Bulletin, 2024, 81 : 1097 - 1116
  • [5] 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering
    Shao, Huiping
    He, Jianzhuang
    Lin, Tao
    Zhang, Zhinan
    Zhang, Yumeng
    Liu, Shuwen
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 1163 - 1170
  • [6] Hydroxyapatite based for bone tissue engineering: innovation and new insights in 3D printing technology
    Fendi, Fendi
    Abdullah, Bualkar
    Suryani, Sri
    Raya, Indah
    Tahir, Dahlang
    Iswahyudi, Iswahyudi
    POLYMER BULLETIN, 2024, 81 (02) : 1097 - 1116
  • [7] 3D printing to enable multifunctionality in polymer-based composites: A review
    Bekas, D. G.
    Hou, Y.
    Liu, Y.
    Panesar, A.
    COMPOSITES PART B-ENGINEERING, 2019, 179
  • [8] Recent Progress in 3D Printing Polymer-Based Bone Scaffolds
    Feng, Ruiqi
    Chu, Ang
    Guo, Yunlong
    Hu, Guang
    Zhang, Biao
    ADVANCED ENGINEERING MATERIALS, 2025,
  • [9] 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration
    Soleymani, Sina
    Naghib, Seyed Morteza
    HELIYON, 2023, 9 (09)
  • [10] Biodegradable conducting polymer-based "3D" scaffolds for tissue engineering
    Liu, Yidong
    Wu, Jen-Chieh
    Min, Yong
    Epstein, Arthur
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245