Protein function prediction with gene ontology: from traditional to deep learning models
被引:12
|
作者:
Thi Thuy Duong Vu
论文数: 0引用数: 0
h-index: 0
机构:
Myongji Univ, Dept Informat & Commun Engn, Yongin, Gyeonggi Do, South KoreaMyongji Univ, Dept Informat & Commun Engn, Yongin, Gyeonggi Do, South Korea
Thi Thuy Duong Vu
[1
]
Jung, Jaehee
论文数: 0引用数: 0
h-index: 0
机构:
Myongji Univ, Dept Informat & Commun Engn, Yongin, Gyeonggi Do, South KoreaMyongji Univ, Dept Informat & Commun Engn, Yongin, Gyeonggi Do, South Korea
Jung, Jaehee
[1
]
机构:
[1] Myongji Univ, Dept Informat & Commun Engn, Yongin, Gyeonggi Do, South Korea
来源:
PEERJ
|
2021年
/
9卷
基金:
新加坡国家研究基金会;
关键词:
Gene Ontology;
Protein function prediction;
Machine learning;
Deep learning;
CAFA3;
Annotation;
SEQUENCE;
ANNOTATION;
CLASSIFICATION;
NETWORKS;
DATABASE;
TOOL;
D O I:
10.7717/peerj.12019
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Protein function prediction is a crucial part of genome annotation. Prediction methods have recently witnessed rapid development, owing to the emergence of high-throughput sequencing technologies. Among the available databases for identifying protein function terms, Gene Ontology (GO) is an important resource that describes the functional properties of proteins. Researchers are employing various approaches to efficiently predict the GO terms. Meanwhile, deep learning, a fast-evolving discipline in data driven approach, exhibits impressive potential with respect to assigning GO terms to amino acid sequences. Herein, we reviewed the currently available computational GO annotation methods for proteins, ranging from conventional to deep learning approach. Further, we selected some suitable predictors from among the reviewed tools and conducted a mini comparison of their performance using a worldwide challenge dataset. Finally, we discussed the remaining major challenges in the field, and emphasized the future directions for protein function prediction with GO.
机构:
Univ Med & Pharm Ho Chi Minh City, Fac Fundamental Sci, Ho Chi Minh City, VietnamUniv Med & Pharm Ho Chi Minh City, Fac Fundamental Sci, Ho Chi Minh City, Vietnam
Vu, Thi Thuy Duong
Kim, Jeongho
论文数: 0引用数: 0
h-index: 0
机构:
Myongji Univ, Dept Informat & Commun Engn, Yongin, South KoreaUniv Med & Pharm Ho Chi Minh City, Fac Fundamental Sci, Ho Chi Minh City, Vietnam
Kim, Jeongho
Jung, Jaehee
论文数: 0引用数: 0
h-index: 0
机构:
Myongji Univ, Dept Informat & Commun Engn, Yongin, South KoreaUniv Med & Pharm Ho Chi Minh City, Fac Fundamental Sci, Ho Chi Minh City, Vietnam