Aspect-ratio dependence of percolation probability in a rectangular system

被引:6
作者
Tsubakihara, S [1 ]
机构
[1] Fukuoka Univ, Fac Sci, Dept Appl Phys, Fukuoka 8140180, Japan
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 06期
关键词
D O I
10.1103/PhysRevE.62.8811
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
I investigate site percolation on a rectangular system (aspect ratio a) of a square lattice for a given occupation probability p (not restricted to p(c)) using computer simulations. The dependence of the percolation probability R on a is shown and analyzed on the basis of a modified finite-size scaling function. A method for evaluating R without statistical simulations is proposed for given conditions (longitudinal dimension L, a, and p) of the system.
引用
收藏
页码:8811 / 8813
页数:3
相关论文
共 17 条
[1]   Effects of boundary conditions on the critical spanning probability [J].
Acharyya, M ;
Stauffer, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (04) :643-647
[2]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[3]   Crossing probabilities in one, two or three directions for percolation on a cubic lattice [J].
Gimel, JC ;
Nicolai, T ;
Durand, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48) :L515-L519
[4]   Scaling and universality in the spanning probability for percolation [J].
Hovi, JP ;
Aharony, A .
PHYSICAL REVIEW E, 1996, 53 (01) :235-253
[5]   CONFORMAL-INVARIANCE IN 2-DIMENSIONAL PERCOLATION [J].
LANGLANDS, R ;
POULIOT, P ;
SAINTAUBIN, Y .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 30 (01) :1-61
[6]   ON THE UNIVERSALITY OF CROSSING PROBABILITIES IN 2-DIMENSIONAL PERCOLATION [J].
LANGLANDS, RP ;
PICHET, C ;
POULIOT, P ;
SAINTAUBIN, Y .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) :553-574
[7]   Universality of critical existence probability for percolation on three-dimensional lattices [J].
Lin, CY ;
Hu, CK ;
Chen, JA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05) :L111-L117
[8]   Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation [J].
Lorenz, CD ;
Ziff, RM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (40) :8147-8157
[9]   Percolation thresholds on elongated lattices [J].
Marrink, SJ ;
Knackstedt, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44) :L461-L466
[10]   PERCOLATION ON THE SQUARE LATTICE IN A LXM GEOMETRY - ANALYSIS OF PERCOLATION CLUSTERS PROPERTIES [J].
MONETTI, RA ;
ALBANO, EV .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (03) :351-355