GENERALIZED QUADRATIC OPERATORS AND PERTURBATIONS

被引:1
作者
Souilah, Khalid [1 ]
机构
[1] Univ Mohammed Premier, Fac Sci Oujda, Dept Math Labo Ibn AlBanna, Oujda 60000, Morocco
来源
MATHEMATICA BOHEMICA | 2022年 / 147卷 / 01期
关键词
generalized quadratic operator; perturbation classes problem;
D O I
10.21136/MB.2021.0010-20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 13 条
  • [1] Intrinsic characterizations of perturbation classes on some Banach spaces
    Aiena, Pietro
    Gonzalez, Manuel
    [J]. ARCHIV DER MATHEMATIK, 2010, 94 (04) : 373 - 381
  • [2] Aleksiejczyk M., 2000, Math. Pannon, V11, P239
  • [3] On properties of generalized quadratic operators
    Deng, Chun Yuan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (04) : 847 - 856
  • [4] On generalized quadratic matrices
    Farebrother, RW
    Trenkler, G
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 410 : 244 - 253
  • [5] The perturbation classes problem in Fredholm theory
    González, M
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) : 65 - 70
  • [6] Gonzalez M., 2015, FUNCT ANAL APPROX CO, V7, P75
  • [7] Lebow A., 1971, J FUNCT ANAL, V7, P1, DOI 10.1016/0022-1236(71)90041-3
  • [8] THE PERTURBATION CLASS OF ALGEBRAIC OPERATORS AND APPLICATIONS
    Oudghiri, Mourad
    Souilah, Khalid
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (03): : 426 - 434
  • [9] Linear Preservers of Quadratic Operators
    Oudghiri, Mourad
    Souilah, Khalid
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4929 - 4938
  • [10] Generalized quadraticity of linear combination of two generalized quadratic matrices
    Petik, T.
    Uc, M.
    Ozdemir, H.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (12) : 2430 - 2439