A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil

被引:91
作者
Binh Thai Pham [1 ,2 ]
Qi, Chongchong [3 ]
Lanh Si Ho [4 ]
Trung Nguyen-Thoi [1 ,2 ]
Al-Ansari, Nadhir [5 ]
Manh Duc Nguyen [6 ]
Huu Duy Nguyen [7 ]
Hai-Bang Ly [8 ]
Hiep Van Le [9 ]
Prakash, Indra [10 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh 700000, Vietnam
[2] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh 700000, Vietnam
[3] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
[4] Hiroshima Univ, Grad Sch Engn, Dept Civil & Environm Engn, Hiroshima 739527, Japan
[5] Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, S-97187 Lulea, Sweden
[6] Univ Transport & Commun, Hanoi 100000, Vietnam
[7] Vietnam Natl Univ, VNU Univ Sci, Fac Geog, Hanoi 100000, Vietnam
[8] Univ Transport & Technol, Hanoi 100000, Vietnam
[9] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[10] Govt Gujarat, BISAG, Dept Sci Technol, Gandhinagar 382007, India
关键词
machine learning; random forest; particle swarm optimization; Vietnam; LANDSLIDE SUSCEPTIBILITY ASSESSMENT; UNCONFINED COMPRESSIVE STRENGTH; ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORK; PREDICTION; SURFACE; ALGORITHM; TAILINGS; DESIGN; PILES;
D O I
10.3390/su12062218
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Determination of shear strength of soil is very important in civil engineering for foundation design, earth and rock fill dam design, highway and airfield design, stability of slopes and cuts, and in the design of coastal structures. In this study, a novel hybrid soft computing model (RF-PSO) of random forest (RF) and particle swarm optimization (PSO) was developed and used to estimate the undrained shear strength of soil based on the clay content (%), moisture content (%), specific gravity (%), void ratio (%), liquid limit (%), and plastic limit (%). In this study, the experimental results of 127 soil samples from national highway project Hai Phong-Thai Binh of Vietnam were used to generate datasets for training and validating models. Pearson correlation coefficient (R) method was used to evaluate and compare performance of the proposed model with single RF model. The results show that the proposed hybrid model (RF-PSO) achieved a high accuracy performance (R = 0.89) in the prediction of shear strength of soil. Validation of the models also indicated that RF-PSO model (R = 0.89 and Root Mean Square Error (RMSE) = 0.453) is superior to the single RF model without optimization (R = 0.87 and RMSE = 0.48). Thus, the proposed hybrid model (RF-PSO) can be used for accurate estimation of shear strength which can be used for the suitable designing of civil engineering structures.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 71 条
[1]  
[Anonymous], 1995, P 6 INT S MICR HUM S
[2]   Empirical characterization of random forest variable importance measures [J].
Archer, Kelfie J. ;
Kirnes, Ryan V. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) :2249-2260
[3]   Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network [J].
Armaghani, Danial Jahed ;
Hajihassani, Mohsen ;
Bejarbaneh, Behnam Yazdani ;
Marto, Aminaton ;
Mohamad, Edy Tonnizam .
MEASUREMENT, 2014, 55 :487-498
[4]   A review of optimization techniques used in the design of fibre composite structures for civil engineering applications [J].
Awad, Ziad K. ;
Aravinthan, Thiru ;
Yan Zhuge ;
Gonzalez, Felipe .
MATERIALS & DESIGN, 2012, 33 :534-544
[5]  
Biau G, 2008, J MACH LEARN RES, V9, P2015
[6]   GIS Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment [J].
Binh Thai Pham ;
Avand, Mohammadtaghi ;
Janizadeh, Saeid ;
Tran Van Phong ;
Al-Ansari, Nadhir ;
Lanh Si Ho ;
Das, Sumit ;
Hiep Van Le ;
Amini, Ata ;
Bozchaloei, Saeid Khosrobeigi ;
Jafari, Faeze ;
Prakash, Indra .
WATER, 2020, 12 (03)
[7]   Development of advanced artificial intelligence models for daily rainfall prediction [J].
Binh Thai Pham ;
Lu Minh Le ;
Tien-Thinh Le ;
Kien-Trinh Thi Bui ;
Vuong Minh Le ;
Hai-Bang Ly ;
Prakash, Indra .
ATMOSPHERIC RESEARCH, 2020, 237 (237)
[8]   A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial Naive Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping [J].
Binh Thai Pham ;
Tran Van Phong ;
Huu Duy Nguyen ;
Qi, Chongchong ;
Al-Ansari, Nadhir ;
Amini, Ata ;
Lanh Si Ho ;
Tran Thi Tuyen ;
Hoang Phan Hai Yen ;
Hai-Bang Ly ;
Prakash, Indra ;
Dieu Tien Bui .
WATER, 2020, 12 (01)
[9]   Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis [J].
Binh Thai Pham ;
Manh Duc Nguyen ;
Dong Van Dao ;
Prakash, Indra ;
Hai-Bang Ly ;
Tien-Thinh Le ;
Lanh Si Ho ;
Kien Trung Nguyen ;
Trinh Quoc Ngo ;
Vu Hoang ;
Le Hoang Son ;
Huong Thanh Thi Ngo ;
Hieu Trung Tran ;
Ngoc Minh Do ;
Hiep Van Le ;
Huu Loc Ho ;
Dieu Tien Bui .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 679 :172-184
[10]   A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers [J].
Binh Thai Pham ;
Prakash, Indra ;
Dou, Jie ;
Singh, Sushant K. ;
Phan Trong Trinh ;
Hieu Trung Tran ;
Tu Minh Le ;
Tran Van Phong ;
Khoi, Dang Kim ;
Shirzadi, Ataollah ;
Dieu Tien Bui .
GEOCARTO INTERNATIONAL, 2020, 35 (12) :1267-1292