Smooth Surface Morphology and Long Carrier Lifetime of InGaP Realized by Low-Temperature-Grown Cover Layer

被引:4
作者
Asami, Meita [1 ]
Watanabe, Kentaroh [2 ]
Nakano, Yoshiaki [1 ]
Sugiyama, Masakazu [2 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138654, Japan
[2] Univ Tokyo, Res Ctr Adv Sci & Technol, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2022年 / 259卷 / 02期
关键词
crystal growth; heterostructures; InGaP; metal organic vapor phase epitaxy; solar cells; surface morphology; GAAS; MOVPE;
D O I
10.1002/pssb.202100305
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The growth of high-crystal-quality GaAs on InGaP without sacrificing the carrier lifetime and shunt resistance of the InGaP layer is reported, utilizing a 10 nm-thick low-temperature-grown InGaP cover layer (LTGCL). Electronic devices with a GaAs/InGaP heterostructure such as solar cells, high-electron-mobility transistors (HEMTs), and lasers have attracted considerable attention because of their superior characteristics compared with conventional homostructure devices. However, the device performance has scope for improvement, particularly, the interface quality. To realize high-performance GaAs/InGaP heterostructure devices, high-crystal-quality GaAs needs to be grown on high-temperature-grown InGaP, which has a long carrier lifetime and high shunt resistance. High-temperature-grown InGaP, however, has a rough surface, which degrades the crystal quality of the overlying GaAs. To solve this problem, the use of high-temperature-grown InGaP with an LTGCL is proposed, which has an atomic-scale smooth surface. The advantages of using an LTGCL are discussed with a heterostructure solar cell as an example. The findings of this study indicate that the LTGCL can contribute to further improvement of the performance of heterostructure devices.
引用
收藏
页数:7
相关论文
共 25 条
[1]   ULTRALONG MINORITY-CARRIER LIFETIME EPITAXIAL GAAS BY PHOTON RECYCLING [J].
AHRENKIEL, RK ;
DUNLAVY, DJ ;
KEYES, B ;
VERNON, SM ;
DIXON, TM ;
TOBIN, SP ;
MILLER, KL ;
HAYES, RE .
APPLIED PHYSICS LETTERS, 1989, 55 (11) :1088-1090
[2]   MINORITY-CARRIER LIFETIME IN GAAS THIN-FILMS [J].
AHRENKIEL, RK ;
DUNLAVY, DJ ;
BENNER, J ;
GALE, RP ;
MCCLELLAND, RW ;
GORMLEY, JV ;
KING, BD .
APPLIED PHYSICS LETTERS, 1988, 53 (07) :598-599
[3]   GA0.5IN0.5P/GAAS INTERFACES BY ORGANOMETALLIC VAPOR-PHASE EPITAXY [J].
BOUR, DP ;
SHEALY, JR ;
MCKERNAN, S .
JOURNAL OF APPLIED PHYSICS, 1988, 63 (04) :1241-1243
[4]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[5]   Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics [J].
Cheng, Cheng-Wei ;
Shiu, Kuen-Ting ;
Li, Ning ;
Han, Shu-Jen ;
Shi, Leathen ;
Sadana, Devendra K. .
NATURE COMMUNICATIONS, 2013, 4
[6]   Generalized Optoelectronic Model of Series-Connected Multijunction Solar Cells [J].
Geisz, John F. ;
Steiner, Myles A. ;
Garcia, Ivan ;
France, Ryan M. ;
McMahon, William E. ;
Osterwald, Carl R. ;
Friedman, Daniel J. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (06) :1827-1839
[7]  
Holonyak N., 2006, J ELECTRON MATER, V35, P4
[8]   AS AND P DESORPTION FROM III-V SEMICONDUCTOR SURFACE IN METALORGANIC CHEMICAL VAPOR-DEPOSITION STUDIED BY SURFACE PHOTOABSORPTION [J].
KOBAYASHI, N ;
KOBAYASHI, Y .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1991, 30 (10A) :L1699-L1701
[9]   Broadband InGaP/GaAs HBT Power Amplifier Integrated Circuit Using Cascode Structure and Optimized Shunt Inductor [J].
Lee, Wooseok ;
Kang, Hyunuk ;
Leee, Hwiseob ;
Lim, Wonseob ;
Bae, Jongseok ;
Koo, Hyungmo ;
Yoon, Jangsup ;
Hwang, Keum Cheol ;
Lee, Kang-Yoon ;
Yang, Youngoo .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (12) :5090-5100
[10]   A STUDY OF MINORITY-CARRIER LIFETIME VERSUS DOPING CONCENTRATION IN NORMAL-TYPE GAAS GROWN BY METALORGANIC CHEMICAL VAPOR-DEPOSITION [J].
LUSH, GB ;
MACMILLAN, HF ;
KEYES, BM ;
LEVI, DH ;
MELLOCH, MR ;
AHRENKIEL, RK ;
LUNDSTROM, MS .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (04) :1436-1442