On the geometry of numerical ranges in spaces with an indefinite inner product

被引:14
|
作者
Bebiano, N
Lemos, R
da Providência, J
Soares, G [1 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
[2] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
[3] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[4] Univ Coimbra, Dept Phys, P-3004516 Coimbra, Portugal
关键词
indefinite inner product; numerical range; generalized Levinger curve;
D O I
10.1016/j.laa.2004.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Geometric properties of the numerical ranges of operators on an indefinite inner product space are investigated. In particular, classes of matrices are presented such that the boundary generating curves of the J-numerical range are hyperbolical. The curvature of the J-numerical range at a boundary point is studied, generalizing results of Fiedler on the classical numerical range. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:17 / 34
页数:18
相关论文
共 50 条
  • [31] QUASIHYPONORMAL AND STRONGLY QUASIHYPONORMAL MATRICES IN INNER PRODUCT SPACES
    Radojevic, Ivana M.
    Djordjevic, Dragan S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 1023 - 1039
  • [32] APPLICATIONS OF UNITARILY DIAGONALIZABLE MATRICES IN AN INDEFINITE INNER PRODUCT SPACE TO MATRIX PARTIAL ORDERS
    Kamaraj, K.
    Karpagam, A.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2025, 28 (01): : 1 - 18
  • [33] THE RE-NND SOLUTIONS OF THE MATRIX EQUATION AXB = C WITH REFERENCE TO INDEFINITE INNER PRODUCT
    Krishnaswamy, D.
    Narayanasamy, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (03): : 795 - 803
  • [34] Joint product numerical range and geometry of reduced density matrices
    Chen, Jianxin
    Guo, Cheng
    Ji, Zhengfeng
    Poon, Yiu-Tung
    Yu, Nengkun
    Zeng, Bei
    Zhou, Jie
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2017, 60 (02)
  • [35] Joint product numerical range and geometry of reduced density matrices
    Jianxin Chen
    Cheng Guo
    Zhengfeng Ji
    Yiu-Tung Poon
    Nengkun Yu
    Bei Zeng
    Jie Zhou
    Science China Physics, Mechanics & Astronomy, 2017, 60
  • [36] Joint product numerical range and geometry of reduced density matrices
    Jianxin Chen
    Cheng Guo
    Zhengfeng Ji
    Yiu-Tung Poon
    Nengkun Yu
    Bei Zeng
    Jie Zhou
    Science China(Physics,Mechanics & Astronomy), 2017, (02) : 15 - 23
  • [37] Numerical ranges and dilations
    Choi, MD
    Li, CK
    LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (01) : 35 - 48
  • [38] KREIN SPACE NUMERICAL RANGES: COMPRESSIONS AND DILATIONS
    Bebiano, N.
    da Providencia, J.
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01): : 36 - 50
  • [39] Numerical ranges of tensors
    Ke, Rihuan
    Li, Wen
    Ng, Michael K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 508 : 100 - 132
  • [40] Relative numerical ranges
    Bracic, Janko
    Diogo, Cristina
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 : 208 - 221