On the geometry of numerical ranges in spaces with an indefinite inner product

被引:14
|
作者
Bebiano, N
Lemos, R
da Providência, J
Soares, G [1 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
[2] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
[3] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[4] Univ Coimbra, Dept Phys, P-3004516 Coimbra, Portugal
关键词
indefinite inner product; numerical range; generalized Levinger curve;
D O I
10.1016/j.laa.2004.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Geometric properties of the numerical ranges of operators on an indefinite inner product space are investigated. In particular, classes of matrices are presented such that the boundary generating curves of the J-numerical range are hyperbolical. The curvature of the J-numerical range at a boundary point is studied, generalizing results of Fiedler on the classical numerical range. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:17 / 34
页数:18
相关论文
共 50 条
  • [21] A characterization for *-isomorphisms in an indefinite inner product space
    Sivakumar, K. C.
    Kamaraj, K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) : 1139 - 1144
  • [22] NUMERICAL RANGES OF THE PRODUCT OF OPERATORS
    Du, Hongke
    Li, Chi-Kwong
    Wang, Kuo-Zhong
    Wang, Yueqing
    Zuo, Ning
    OPERATORS AND MATRICES, 2017, 11 (01): : 171 - 180
  • [23] The spectrum of the product of operators, and the product of their numerical ranges
    Li, Chi-Kwong
    Tsai, Ming-Cheng
    Wang, Kuo-Zhong
    Wong, Ngai-Ching
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 487 - 499
  • [24] NUMERICAL RANGES OF COMPOSITION OPERATORS WITH INNER SYMBOLS
    Matache, Valentin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) : 235 - 249
  • [25] MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE
    Kamaraj, K.
    Sivakumar, K. C.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2005, 19 (1-2) : 297 - 310
  • [26] On sums of range symmetric matrices with reference to indefinite inner product
    D. Krishnaswamy
    A. Narayanasamy
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 499 - 510
  • [27] On sums of range symmetric matrices with reference to indefinite inner product
    Krishnaswamy, D.
    Narayanasamy, A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02) : 499 - 510
  • [28] On the geometry of numerical ranges over finite fields
    Camenga, Kristin A.
    Collins, Brandon
    Hoefer, Gage
    Quezada, Jonny
    Rault, Patrick X.
    Willson, James
    Yates, Rebekah B. Johnson
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 628 : 182 - 201
  • [29] Krein spaces numerical ranges and their computer generation
    Bebiano, N.
    Da Providencia, J.
    Nata, A.
    Soares, G.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2008, 17
  • [30] Circles in the spectrum and the geometry of orbits: A numerical ranges approach
    Mueller, Vladimir
    Tomilov, Yuri
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (02) : 433 - 460