Explainable artificial intelligence to detect atrial fibrillation using electrocardiogram

被引:71
作者
Jo, Yong-Yeon [1 ]
Cho, Younghoon [2 ]
Lee, Soo Youn [3 ]
Kwon, Joon-myoung [1 ,2 ,4 ,5 ]
Kim, Kyung-Hee [3 ,5 ]
Jeon, Ki-Hyun [3 ,5 ]
Cho, Soohyun [2 ]
Park, Jinsik [3 ]
Oh, Byung-Hee [3 ]
机构
[1] Med AI, Med Res Team, Seoul, South Korea
[2] Bodyfriend, Med Res & Dev Ctr, Seoul, South Korea
[3] Mediplex Sejong Hosp, Cardiovasc Ctr, Div Cardiol, Incheon, South Korea
[4] Mediplex Sejong Hosp, Dept Emergency Med, Incheon, South Korea
[5] Sejong Med Res Inst, Artificial Intelligence & Big Data Res Ctr, 20 Gyeyangmunhwa Ro, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
Atrial fibrillation; Deep learning; Electrocardiography; Artificial intelligence; ACCURACY;
D O I
10.1016/j.ijcard.2020.11.053
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: Early detection and intervention of atrial fibrillation (AF) is a cornerstone for effective treatment and prevention of mortality. Diverse deep learning models (DLMs) have been developed, but they could not be applied in clinical practice owing to their lack of interpretability. We developed an explainable DLM to detect AF using ECG and validated its performance using diverse formats of ECG. Methods: We conducted a retrospective study. The Sejong ECG dataset comprising 128,399 ECGs was used to develop and internally validated the explainable DLM. DLM was developed with two feature modules, which could describe the reason for DLM decisions. DLM was external validated using data from 21,837, 10,605, and 8528 ECGs from PTB-XL, Chapman, and PhysioNet non-restricted datasets, respectively. The predictor variables were digitally stored ECGs, and the endpoints were AFs . Results: During internal and external validation of the DLM, the area under the receiver operating characteristic curves (AUCs) of the DLM using a 12-lead ECG in detecting AF were 0.997-0.999. The AUCs of the DLM with VAE using a 6-lead and single-lead ECG were 0.990-0.999. The AUCs of explainability about features such as rhythm irregularity and absence of P-wave were 0.961-0.993 and 0.983-0.993, respectively. Conclusions: Our DLM successfully detected AF using diverse ECGs and described the reason for this decision. The results indicated that an explainable artificial intelligence methodology could be adopted to the DLM using ECG and enhance the transparency of the DLM for its application in clinical practice. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 25 条
[1]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[2]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[3]   Worldwide Epidemiology of Atrial Fibrillation A Global Burden of Disease 2010 Study [J].
Chugh, Sumeet S. ;
Havmoeller, Rasmus ;
Narayanan, Kumar ;
Singh, David ;
Rienstra, Michiel ;
Benjamin, Emelia J. ;
Gillum, Richard F. ;
Kim, Young-Hoon ;
McAnulty, John H. ;
Zheng, Zhi-Jie ;
Forouzanfar, Mohammad H. ;
Naghavi, Mohsen ;
Mensah, George A. ;
Ezzati, Majid ;
Murray, Christopher J. L. .
CIRCULATION, 2014, 129 (08) :837-847
[4]   Atrial Fibrillation JACC Council Perspectives [J].
Chung, Mina K. ;
Refaat, Marwan ;
Shen, Win-Kuang ;
Kutyifa, Valentina ;
Cha, Yong-Mei ;
Di Biase, Luigi ;
Baranchuk, Adrian ;
Lampert, Rachel ;
Natale, Andrea ;
Fisher, John ;
Lakkireddy, Dhanunjaya R. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (14) :1689-1713
[5]   AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017 [J].
Clifford, Gari D. ;
Liu, Chengyu ;
Moody, Benjamin ;
Lehman, Li-Wei H. ;
Silva, Ikaro ;
Li, Qiao ;
Johnson, A. E. ;
Mark, Roger G. .
2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
[6]   Estimates of Current and Future Incidence and Prevalence of Atrial Fibrillation in the US Adult Population [J].
Colilla, Susan ;
Crow, Ann ;
Petkun, William ;
Singer, Daniel E. ;
Simon, Teresa ;
Liu, Xianchen .
AMERICAN JOURNAL OF CARDIOLOGY, 2013, 112 (08) :1142-1147
[7]   Assessing the direct costs of treating nonvalvular atrial fibrillation in the United States [J].
Coyne, Karin S. ;
Paramore, Clark ;
Grandy, Susan ;
Mercader, Marco ;
Reynolds, Matthew ;
Zimetbaum, Peter .
VALUE IN HEALTH, 2006, 9 (05) :348-356
[8]   Emerging Technologies for Identifying Atrial Fibrillation [J].
Ding, Eric Y. ;
Marcus, Gregory M. ;
McManus, David D. .
CIRCULATION RESEARCH, 2020, 127 (01) :128-142
[9]   Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram [J].
Galloway, Conner D. ;
Valys, Alexander V. ;
Shreibati, Jacqueline B. ;
Treiman, Daniel L. ;
Petterson, Frank L. ;
Gundotra, Vivek P. ;
Albert, David E. ;
Attia, Zachi I. ;
Carter, Rickey E. ;
Asirvatham, Samuel J. ;
Ackerman, Michael J. ;
Noseworthy, Peter A. ;
Dillon, John J. ;
Friedman, Paul A. .
JAMA CARDIOLOGY, 2019, 4 (05) :428-436
[10]   Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J].
Hannun, Awni Y. ;
Rajpurkar, Pranav ;
Haghpanahi, Masoumeh ;
Tison, Geoffrey H. ;
Bourn, Codie ;
Turakhia, Mintu P. ;
Ng, Andrew Y. .
NATURE MEDICINE, 2019, 25 (01) :65-+