The Grothendieck group of non-commutative non-noetherian analogues of P1 and regular algebras of global dimension two

被引:2
作者
Sisodia, Gautam [1 ]
Smith, S. Paul [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Regular algebras; Graded rings; Global dimension; Grothendieck group;
D O I
10.1016/j.jalgebra.2014.11.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a finite-dimensional positively-graded vector space. Let b is an element of V circle times V be a homogeneous element whose rank is dim(V). Let A = TV/(b), the quotient of the tensor algebra TV modulo the 2-sided ideal generated by b. Let gr(A) be the category of finitely presented graded left A-modules and fdim(A) its full subcategory of finite dimensional modules. Let qgr(A) be the quotient category gr(A)/fdim(A). We compute the Grothendieck group K-o(qgr(A)). In particular, if the reciprocal of the Hilbert series of A, which is a polynomial, is irreducible, then K-o(qgr(A)) congruent to Z[theta] subset of R as ordered abelian groups where theta is the smallest positive real root of that polynomial. When dim(k)(V) = 2, qgr(A) is equivalent to the category of coherent sheaves on the projective line, P-1, or a stacky P-1 if V is not concentrated in degree 1. If dim(k)(V) >= 3, results of Piontkovski and Minamoto suggest that qgr(A) behaves as if it is the category of "coherent sheaves" on a non-commutative, non-noetherian analogue of P-1. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:188 / 210
页数:23
相关论文
共 16 条
[1]  
Cvetkovic D., 1980, PURE APPL MATH, V87
[2]  
Flajolet P., 2009, ANAL COMBINATORICS, P106
[3]  
Gantmacher F.R., 1960, MATRIX THEORY, VII
[4]  
Hironaka E., 2009, Notices Amer. Math. Soc, V56, P374
[5]   An equivalence of categories for graded modules over monomial algebras and path algebras of quivers [J].
Holdaway, Cody ;
Smith, S. Paul .
JOURNAL OF ALGEBRA, 2012, 353 (01) :249-260
[6]  
Kontsevich M, 2000, GELF MATH SEMINAR, P85
[7]  
LIND D, 1995, INTRO SYMBOLIC DYNAM
[8]   A noncommutative version of Beilinson's theorem [J].
Minamoto, Hiroyuki .
JOURNAL OF ALGEBRA, 2008, 320 (01) :238-252
[9]  
Mori I., 2001, J PURE APPL MATH, V157
[10]   The Grothendieck group of a quantum projective space bundle [J].
Mori, Izuru ;
Smith, S. Paul .
K-THEORY, 2006, 37 (03) :263-289