Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity

被引:251
作者
Rashid, Barnaly [1 ,2 ,3 ]
Arbabshirani, Mohammad R. [1 ,2 ,8 ]
Damaraju, Eswar [1 ,2 ,3 ]
Cetin, Mustafa S. [1 ,2 ,7 ]
Miller, Robyn [3 ]
Pearlson, Godfrey D. [4 ,5 ,6 ]
Calhoun, Vince D. [1 ,2 ,3 ,5 ,7 ]
机构
[1] Mind Res Network, 1101 Yale Blvd NE, Albuquerque, NM 87131 USA
[2] LBERI, Albuquerque, NM USA
[3] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[4] Olin Neuropsychiat Res Ctr, Inst Living, Hartford, CT USA
[5] Yale Univ, Sch Med, Dept Psychiat, New Haven, CT USA
[6] Yale Univ, Sch Med, Neurobiol, New Haven, CT USA
[7] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
[8] Geisinger Hlth Syst, Danville, PA USA
关键词
fMRI; Resting-state; Dynamic functional network connectivity; Classification; Schizophrenia; Bipolar; FUNCTIONAL NETWORK CONNECTIVITY; MAGNETIC-RESONANCE; TEMPORAL-LOBE; COMPONENTS; DISORDER; CORTEX; MRI;
D O I
10.1016/j.neuroimage.2016.04.051
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recently, functional network connectivity (FNC, defined as the temporal correlation among spatially distant brain networks) has been used to examine the functional organization of brain networks in various psychiatric illnesses. Dynamic FNC is a recent extension of the conventional FNC analysis that takes into account FNC changes over short periods of time. While such dynamic FNC measures may be more informative about various aspects of connectivity, there has been no detailed head-to-head comparison of the ability of static and dynamic FNC to perform classification in complex mental illnesses. This paper proposes a framework for automatic classification of schizophrenia, bipolar and healthy subjects based on their static and dynamic FNC features. Also, we compare cross-validated classification performance between static and dynamic FNC. Results show that the dynamic FNC significantly outperforms the static FNC in terms of predictive accuracy, indicating that features from dynamic FNC have distinct advantages over static FNC for classification purposes. Moreover, combining static and dynamic FNC features does not significantly improve the classification performance over the dynamic FNC features alone, suggesting that static FNC does not add any significant information when combined with dynamic FNC for classification purposes. A three-way classification methodology based on static and dynamic FNC features discriminates individual subjects into appropriate diagnostic groups with high accuracy. Our proposed classification framework is potentially applicable to additional mental disorders. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 58 条
[1]   The Effect of Model Order Selection in Group PICA [J].
Abou-Elseoud, Ahmed ;
Starck, Tuomo ;
Remes, Jukka ;
Nikkinen, Juha ;
Tervonen, Osmo ;
Kiviniemi, Vesa .
HUMAN BRAIN MAPPING, 2010, 31 (08) :1207-1216
[2]  
Allen E.A., 2012, CEREB CORTEX
[3]   A baseline for the multivariate comparison of resting-state networks [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Damaraju, Eswar ;
Gruner, William ;
Segall, Judith M. ;
Silva, Rogers F. ;
Havlicek, Martin ;
Rachakonda, Srinivas ;
Fries, Jill ;
Kalyanam, Ravi ;
Michael, Andrew M. ;
Caprihan, Arvind ;
Turner, Jessica A. ;
Eichele, Tom ;
Adelsheim, Steven ;
Bryan, Angela D. ;
Bustillo, Juan ;
Clark, Vincent P. ;
Ewing, Sarah W. Feldstein ;
Filbey, Francesca ;
Ford, Corey C. ;
Hutchison, Kent ;
Jung, Rex E. ;
Kiehl, Kent A. ;
Kodituwakku, Piyadasa ;
Komesu, Yuko M. ;
Mayer, Andrew R. ;
Pearlson, Godfrey D. ;
Phillips, John P. ;
Sadek, Joseph R. ;
Stevens, Michael ;
Teuscher, Ursina ;
Thoma, Robert J. ;
Calhoun, Vince D. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[4]   An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia [J].
Altshuler, LL ;
Bartzokis, G ;
Grieder, T ;
Curran, J ;
Jimenez, T ;
Leight, K ;
Wilkins, J ;
Gerner, R ;
Mintz, J .
BIOLOGICAL PSYCHIATRY, 2000, 48 (02) :147-162
[5]  
[Anonymous], 1997, USERS GUIDE STRUCTUR
[6]  
[Anonymous], 2001, P INT C ICA BSS SAN
[7]   Functional Network Connectivity During Rest and Task Conditions: A Comparative Study [J].
Arbabshirani, Mohammad R. ;
Havlicek, Martin ;
Kiehl, Kent A. ;
Pearlson, Godfrey D. ;
Calhoun, Vince D. .
HUMAN BRAIN MAPPING, 2013, 34 (11) :2959-2971
[8]   Classification of schizophrenia patients based on resting-state functional network connectivity [J].
Arbabshirani, Mohammad R. ;
Kiehl, Kent A. ;
Pearlson, Godfrey D. ;
Calhoun, Vince D. .
FRONTIERS IN NEUROSCIENCE, 2013, 7
[9]   Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses [J].
Arieli, A ;
Sterkin, A ;
Grinvald, A ;
Aertsen, A .
SCIENCE, 1996, 273 (5283) :1868-1871
[10]   Automatic Bayesian Classification of Healthy Controls, Bipolar Disorder, and Schizophrenia Using Intrinsic Connectivity Maps From fMRI Data [J].
Arribas, Juan I. ;
Calhoun, Vince D. ;
Adali, Tulay .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (12) :2850-2860