Fuzzy C-means clustering of web users for educational sites

被引:0
|
作者
Lingras, P [1 ]
Yan, R [1 ]
West, C [1 ]
机构
[1] St Marys Univ, Dept Math & Comp Sci, Halifax, NS B3H 3C3, Canada
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS | 2003年 / 2671卷
关键词
fuzzy C-means; clustering; web usage mining; unsupervised learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Characterization of users is an important issue in the design and maintenance of websites. Analysis of the data from the World Wide Web faces certain challenges that are not commonly observed in conventional data analysis. The likelihood of bad or incomplete web usage data is higher than in conventional applications. The clusters and associations in web mining do not necessarily have crisp boundaries. Researchers have studied the possibility of using fuzzy sets for clustering of web resources. This paper presents clustering using a fuzzy c-means algorithm, on secondary data consisting of access logs from the World Wide Web. This type of analysis is called web usage mining, which involves applying data mining techniques to discover usage patterns from web data. The fuzzy c-means clustering was applied to the web visitors to three educational websites. The analysis shows the ability of the fuzzy c-means clustering to distinguish different user characteristics of these sites.
引用
收藏
页码:557 / 562
页数:6
相关论文
共 50 条
  • [21] Fuzzy c-means clustering of partially missing data sets
    Hathaway, RJ
    Overstreet, DD
    Bezdek, JC
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE III, 2000, 4055 : 159 - 165
  • [22] An Outlier Detection Method based on Fuzzy C-Means Clustering
    Li, Qiang
    Zhang, Jianpei
    Feng, Guangsheng
    ADVANCED DESIGN AND MANUFACTURE II, 2010, 419-420 : 165 - 168
  • [23] Fuzzy C-Means Clustering Protocol for Wireless Sensor Networks
    Hoang, D. C.
    Kumar, R.
    Panda, S. K.
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 3477 - 3482
  • [24] Fuzzy c-means clustering with spatial information for image segmentation
    Chuang, KS
    Tzeng, HL
    Chen, S
    Wu, J
    Chen, TJ
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2006, 30 (01) : 9 - 15
  • [25] A Robust Fuzzy Local Information C-Means Clustering Algorithm
    Krinidis, Stelios
    Chatzis, Vassilios
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (05) : 1328 - 1337
  • [26] An improved fuzzy C-means clustering algorithm based on PSO
    Niu Q.
    Huang X.
    Journal of Software, 2011, 6 (05) : 873 - 879
  • [27] Genetically derived Fuzzy c-means clustering algorithm for segmentation
    Kachouie, NN
    Alirezaie, J
    Raahemifar, K
    CCECE 2003: CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, PROCEEDINGS: TOWARD A CARING AND HUMANE TECHNOLOGY, 2003, : 1119 - 1122
  • [28] Measuring the congruence of fuzzy partitions in fuzzy c-means clustering
    Suleman, Abdul
    APPLIED SOFT COMPUTING, 2017, 52 : 1285 - 1295
  • [29] Fuzzy c-means clustering for power system coherence
    Wang, SC
    Huang, PH
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 2850 - 2855
  • [30] Density-Weighted Fuzzy c-Means Clustering
    Hathaway, Richard J.
    Hu, Yingkang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2009, 17 (01) : 243 - 252