Fuzzy C-means clustering of web users for educational sites

被引:0
|
作者
Lingras, P [1 ]
Yan, R [1 ]
West, C [1 ]
机构
[1] St Marys Univ, Dept Math & Comp Sci, Halifax, NS B3H 3C3, Canada
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS | 2003年 / 2671卷
关键词
fuzzy C-means; clustering; web usage mining; unsupervised learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Characterization of users is an important issue in the design and maintenance of websites. Analysis of the data from the World Wide Web faces certain challenges that are not commonly observed in conventional data analysis. The likelihood of bad or incomplete web usage data is higher than in conventional applications. The clusters and associations in web mining do not necessarily have crisp boundaries. Researchers have studied the possibility of using fuzzy sets for clustering of web resources. This paper presents clustering using a fuzzy c-means algorithm, on secondary data consisting of access logs from the World Wide Web. This type of analysis is called web usage mining, which involves applying data mining techniques to discover usage patterns from web data. The fuzzy c-means clustering was applied to the web visitors to three educational websites. The analysis shows the ability of the fuzzy c-means clustering to distinguish different user characteristics of these sites.
引用
收藏
页码:557 / 562
页数:6
相关论文
共 50 条
  • [1] Soil clustering by fuzzy c-means algorithm
    Goktepe, AB
    Altun, S
    Sezer, A
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (10) : 691 - 698
  • [2] Semantic Similarity-Based Clustering of Web Documents Using Fuzzy C-Means
    Avanija, J.
    Ramar, K.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2015, 14 (03)
  • [3] Sparse learning based fuzzy c-means clustering
    Gu, Jing
    Jiao, Licheng
    Yang, Shuyuan
    Zhao, Jiaqi
    KNOWLEDGE-BASED SYSTEMS, 2017, 119 : 113 - 125
  • [4] Projected fuzzy C-means clustering with locality preservation
    Zhou, Jie
    Pedrycz, Witold
    Yue, Xiaodong
    Gao, Can
    Lai, Zhihui
    Wan, Jun
    PATTERN RECOGNITION, 2021, 113
  • [5] Analytically tractable case of fuzzy c-means clustering
    Pianykh, OS
    PATTERN RECOGNITION, 2006, 39 (01) : 35 - 46
  • [6] k-means and fuzzy c-means fusion for object clustering
    Heni, Ashraf
    Jdey, Imen
    Ltifi, Hela
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 177 - 182
  • [7] An Improved Fuzzy C-means Clustering Algorithm
    Duan, Lingzi
    Yu, Fusheng
    Zhan, Li
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1199 - 1204
  • [8] Intuitionistic fuzzy C-means clustering algorithms
    Xu, Zeshui
    Wu, Junjie
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (04) : 580 - 590
  • [9] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [10] Fuzzy Approaches To Hard c-Means Clustering
    Runkler, Thomas A.
    Keller, James M.
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,