TEMPORAL AND PHYSICAL CONNECTION BETWEEN CORONAL MASS EJECTIONS AND FLARES

被引:38
作者
Chen, James [1 ]
Kunkel, Valbona [2 ,3 ]
机构
[1] USN, Div Plasma Phys, Res Lab, Washington, DC 20375 USA
[2] George Mason Univ, Fairfax, VA 22030 USA
[3] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA
关键词
magnetohydrodynamics (MHD); stars: flare; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: magnetic topology; Sun:; X-rays; gamma rays; FLUX-ROPE ACCELERATION; MAGNETIC-FLUX; ENERGY-RELEASE; ERUPTIVE PROMINENCE; LOOP TRANSIENTS; MODEL; RECONNECTION; EVOLUTION; FIELD; PROPAGATION;
D O I
10.1088/0004-637X/717/2/1105
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The physical connection between the eruption of coronal mass ejections (CMEs) and associated flare energy release is examined. The trajectories of five CMEs are determined using LASCO/SOHO or SECCHI/STEREO data, and the associated soft X-ray (SXR) light curves are obtained from GOES 1-8 angstrom data. As the theoretical description of CME physics, the existing erupting flux-rope model is used in which an initial flux rope is driven out of equilibrium by the increasing poloidal magnetic flux Phi(p)(t) (poloidal "flux injection"). Mathematically, this is represented by d Phi(p)(t)/dt. For each CME, this function is adjusted to obtain the solution that best fits the observed height-time data. The resulting d Phi(p)(t)/dt is shown to be strongly constrained by the CME height data. This function and the attendant electromotive force (EMF) given by epsilon(t) = -(1/c)d Phi(p)(t)/dt constitute predictions of the theory for each CME trajectory. It is shown that the best-fit solutions fit the CME trajectories within 1%-2% of the CME height data and that the temporal profile of the predicted d Phi(p)(t)/dt is correlated with that of the associated X-ray light curve regardless of the flare duration. Specifically, we find that the observed duration of SXR emission Delta T-SXR is comparable to and scales with the predicted duration Delta T-p of poloidal flux injection, i.e.,Delta T-SXR similar or equal to Delta T-p. Neither the predicted d Phi(p)(t)/dt nor the input CME height data contain any information on X-ray data. Thus, the correlation is nontrivial, constituting evidence that poloidal flux injection is physically connected to flare energy release. It is suggested that this connection is provided by the EMF that produces electric fields to accelerate particles.
引用
收藏
页码:1105 / 1122
页数:18
相关论文
共 82 条
[1]   A twisted flux rope model for coronal mass ejections and two-ribbon flares [J].
Amari, T ;
Luciani, JF ;
Mikic, Z ;
Linker, J .
ASTROPHYSICAL JOURNAL, 2000, 529 (01) :L49-L52
[2]   A model for solar coronal mass ejections [J].
Antiochos, SK ;
DeVore, CR ;
Klimchuk, JA .
ASTROPHYSICAL JOURNAL, 1999, 510 (01) :485-493
[3]   CAN CORONAL LOOP TRANSIENTS BE DRIVEN MAGNETICALLY [J].
ANZER, U .
SOLAR PHYSICS, 1978, 57 (01) :111-118
[4]  
Birn J, 2001, J GEOPHYS RES-SPACE, V106, P3715, DOI 10.1029/1999JA900449
[5]   On the aerodynamic drag force acting on interplanetary coronal mass ejections [J].
Cargill, PJ .
SOLAR PHYSICS, 2004, 221 (01) :135-149
[6]   Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma [J].
Cargill, PJ ;
Chen, J ;
Spicer, DS ;
Zalesak, ST .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A3) :4855-4870
[7]   The flux-rope scaling of the acceleration of coronal mass ejections and eruptive prominences [J].
Chen, J. ;
Marque, C. ;
Vourlidas, A. ;
Krall, J. ;
Schuck, P. W. .
ASTROPHYSICAL JOURNAL, 2006, 649 (01) :452-463
[8]   Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13 [J].
Chen, J ;
Howard, RA ;
Brueckner, GE ;
Santoro, R ;
Krall, J ;
Paswaters, SE ;
StCyr, OC ;
Schwenn, R ;
Lamy, P ;
Simnett, GM .
ASTROPHYSICAL JOURNAL, 1997, 490 (02) :L191-&
[10]   INTERPLANETARY MAGNETIC CLOUDS - TOPOLOGY AND DRIVING MECHANISM [J].
CHEN, J ;
GARREN, DA .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (21) :2319-2322