Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode

被引:68
作者
Kawasaki, Seiji [1 ]
Takahashi, Ryota [1 ]
Yamamoto, Takahisa [2 ]
Kobayashi, Masaki [3 ]
Kumigashira, Hiroshi [3 ]
Yoshinobu, Jun [1 ]
Komori, Fumio [1 ]
Kudo, Akihiko [4 ,5 ]
Lippmaa, Mikk [1 ]
机构
[1] Univ Tokyo, ISSP, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778581, Japan
[2] Nagoya Univ, Grad Sch Engn, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan
[3] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Photon Factory, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan
[4] Tokyo Univ Sci, Fac Sci, Dept Appl Chem, 1-3 Kagurazaka, Tokyo 1628601, Japan
[5] Tokyo Univ Sci, Photocatalysis Int Res Ctr, Res Inst Sci & Technol, 2641 Noda, Yamazaki 2788510, Japan
基金
日本学术振兴会;
关键词
NANOSTRUCTURE; NANOWIRES; CELLS;
D O I
10.1038/ncomms11818
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Photoactive silicon-based nanostructure by self-organized electrochemical processing [J].
Aggour, M. ;
Skorupska, K. ;
Pereira, T. Stempel ;
Jungblut, H. ;
Grzanna, J. ;
Lewerenz, H. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (09) :H794-H797
[2]  
Barin Ihsan., 2013, Thermochemical properties of inorganic substances: supplement
[3]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[4]  
Darling A.S, 1973, Int. Mater. Rev., V18, P91
[5]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[6]   Electronic Structure and Photoelectrochemical Properties of an Ir-Doped SrTiO3 Photocatalyst [J].
Kawasaki, Seiji ;
Takahashi, Ryota ;
Akagi, Kazuto ;
Yoshinobu, Jun ;
Komori, Fumio ;
Horiba, Koji ;
Kumigashira, Hiroshi ;
Iwashina, Katsuya ;
Kudo, Akihiko ;
Lippmaa, Mikk .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (35) :20222-20228
[7]   A Three Component Self-Assembled Epitaxial Nanocomposite Thin Film [J].
Kim, Dong Hun ;
Sun, Xue Yin ;
Aimon, Nicolas M. ;
Kim, Jae Jin ;
Campion, Michael J. ;
Tuller, Harry L. ;
Kornblum, Lior ;
Walker, Fred J. ;
Ahn, Charles H. ;
Ross, Caroline A. .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (20) :3091-3100
[8]   Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review [J].
Lin, Yongjing ;
Yuan, Guangbi ;
Liu, Rui ;
Zhou, Sa ;
Sheehan, Stafford W. ;
Wang, Dunwei .
CHEMICAL PHYSICS LETTERS, 2011, 507 (4-6) :209-215
[9]   Semiconductor Nanowires for Artificial Photosynthesis [J].
Liu, Chong ;
Dasgupta, Neil P. ;
Yang, Peidong .
CHEMISTRY OF MATERIALS, 2014, 26 (01) :415-422
[10]   ELECTROCHEMICAL, SOLID-STATE, PHOTOCHEMICAL AND TECHNOLOGICAL ASPECTS OF PHOTOELECTROCHEMICAL ENERGY CONVERTERS [J].
MANASSEN, J ;
CAHEN, D ;
HODES, G ;
SOFER, A .
NATURE, 1976, 263 (5573) :97-100