Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood

被引:75
作者
Yang, Yunwen [1 ]
Wang, Huixia Judy [2 ]
He, Xuming [3 ]
机构
[1] Google Inc, Seattle, WA 98103 USA
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Bayesian; censoring; posterior; quantile regression; EMPIRICAL LIKELIHOOD; SURVIVAL ANALYSIS; MODEL; SELECTION;
D O I
10.1111/insr.12114
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile regression methods with complete or censored data when an asymmetric Laplace likelihood is used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression framework because the usual quantile regression estimator can be derived as the maximum likelihood estimator under such a model, and this working likelihood enables highly efficient Markov chain Monte Carlo algorithms for posterior sampling. However, it seems to be under-recognised that the stationary distribution for the resulting posterior does not provide valid posterior inference directly. We demonstrate that a simple adjustment to the covariance matrix of the posterior chain leads to asymptotically valid posterior inference. Our simulation results confirm that the posterior inference, when appropriately adjusted, is an attractive alternative to other asymptotic approximations in quantile regression, especially in the presence of censored data.
引用
收藏
页码:327 / 344
页数:18
相关论文
共 70 条
  • [1] Alhamazawi R., 2012, J STAT COMPUT SIM, V84, P868
  • [2] Alhamzawi R., 2012, BRQ BAYESIAN ANAL QU
  • [3] Bayesian Tobit quantile regression using g-prior distribution with ridge parameter
    Alhamzawi, Rahim
    Yu, Keming
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (14) : 2903 - 2918
  • [4] Conjugate priors and variable selection for Bayesian quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 209 - 219
  • [5] Bayesian adaptive Lasso quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    Benoit, Dries F.
    [J]. STATISTICAL MODELLING, 2012, 12 (03) : 279 - 297
  • [6] [Anonymous], 2001, The Laplace Distributionand Generalizations: A Revisit With Applications to Communications,Economics, Engineering, and Finance
  • [7] Benoit D.F., 2014, BayesQR: Bayesian quantile regression
  • [8] Bayesian lasso binary quantile regression
    Benoit, Dries F.
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2861 - 2873
  • [9] Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution
    Benoit, Dries F.
    Van den Poel, Dirk
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2012, 27 (07) : 1174 - 1188
  • [10] An alternative estimator for the censored quantile regression model
    Buchinsky, M
    Hahn, JY
    [J]. ECONOMETRICA, 1998, 66 (03) : 653 - 671