Defect-Engineered β-MnO2-δ Precursors Control the Structure-Property Relationships in High-Voltage Spinel LiMn1.5Ni0.5O4-δ

被引:24
作者
Haruna, Aderemi B. [1 ]
Mwonga, Patrick [1 ]
Barrett, Dean [1 ]
Rodella, Cristiane B. [2 ]
Forbes, Roy P. [1 ]
Venter, Andrew [3 ]
Sentsho, Zeldah [3 ]
Fletcher, Philip J. [4 ]
Marken, Frank [4 ]
Ozoemena, Kenneth, I [1 ]
机构
[1] Univ Witwatersrand, Sch Chem, Mol Sci Inst, ZA-2050 Johannesburg, South Africa
[2] LNLS Brazilian Ctr Energy & Mat, Brazilian Synchrotron Light Lab, CNPEM, BR-13083970 Campinas, SP, Brazil
[3] SOC Ltd, Necsa South African Nucl Energy Corp, Res & Technol Dev Div, ZA-0001 Pretoria, South Africa
[4] Univ Bath, Mat & Chem Characterizat Facil MC2, Bath BA2 7AY, Avon, England
基金
新加坡国家研究基金会;
关键词
LINI0.5MN1.5O4 CATHODE MATERIALS; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; ELECTRODE MATERIALS; KINETIC-PROPERTIES; OXYGEN DEFICIENCY; MN3+ CONTENT; NANORODS; NICKEL;
D O I
10.1021/acsomega.1c03656
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study examines the role of defects in structure-property relationships in spinel LiMn1.5Ni0.5O4 (LMNO) cathode materials, especially in terms of Mn3+ content, degree of disorder, and impurity phase, without the use of the traditional high-temperature annealing (>= 700 degrees C used for making disordered LMNO). Two different phases of LMNO (i.e., highly P4(3)32-ordered and highly Fd (3) over barm-disordered) have been prepared from two different beta-MnO2-delta precursors obtained from an argon-rich atmosphere (beta-MnO2-delta (Ar)) and a hydrogen-rich atmosphere [beta-MnO2-delta (H-2)]. The LMNO samples and their corresponding beta-MnO2-delta precursors are thoroughly characterized using different techniques including high- resolution transmission electron microscopy, field-emission scanning electron microscopy, Raman spectroscopy, powder neutron diffraction, X-ray photoelectron spectroscopy, synchrotron X-ray diffraction, X-ray absorption near-edge spectroscopy, and electrochemistry. LMNO from beta-MnO2-delta (H-2) exhibits higher defects (oxygen vacancy content) than the one from the beta-MnO2-delta (Ar). For the first time, defective beta-MnO2-delta has been adopted as precursors for LMNO cathode materials with controlled oxygen vacancy, disordered phase, Mn3+ content, and impurity contents without the need for conventional methods of doping with metal ions, high synthetic temperature, use of organic compounds, postannealing, microwave, or modification of the temperature-cooling profiles. The results show that the oxygen vacancy changes concurrently with the degree of disorder and Mn3+ content, and the best electrochemical performance is only obtained at 850 degrees C for LMNO-(Ar). The findings in this work present unique opportunities that allow the use of beta-MnO2-delta as viable precursors for manipulating the structure-property relationships in LMNO spinel materials for potential development of highperformance high-voltage lithium-ion batteries.
引用
收藏
页码:25562 / 25573
页数:12
相关论文
共 51 条
[1]   Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers [J].
Adekunle, Abolanle S. ;
Ozoemena, Kenneth I. .
ELECTROCHIMICA ACTA, 2008, 53 (19) :5774-5782
[2]   Changes in the local structure of LiMgyNi0.5-yMn1.5O4 electrode materials during lithium extraction [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL ;
Zhecheva, E ;
Stoyanova, R .
CHEMISTRY OF MATERIALS, 2004, 16 (08) :1573-1579
[3]   Composition-Structure Relationships in the Li-Ion Battery Electrode Material LiNi0.5Mn1.5O4 [J].
Cabana, Jordi ;
Casas-Cabanas, Montserrat ;
Omenya, Fredrick O. ;
Chernova, Natasha A. ;
Zeng, Dongli ;
Whittingham, M. Stanley ;
Grey, Clare P. .
CHEMISTRY OF MATERIALS, 2012, 24 (15) :2952-2964
[4]   Factors Influencing the Electrochemical Properties of High-Voltage Spinel Cathodes: Relative Impact of Morphology and Cation Ordering [J].
Chemelewski, Katharine R. ;
Lee, Eun-Sung ;
Li, Wei ;
Manthiram, Arumugam .
CHEMISTRY OF MATERIALS, 2013, 25 (14) :2890-2897
[5]   Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies [J].
Cheng, Fangyi ;
Zhang, Tianran ;
Zhang, Yi ;
Du, Jing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2474-2477
[6]   Synchrotron radiation X-ray powder diffraction techniques applied in hydrogen storage materials - A review [J].
Cheng, Honghui ;
Lu, Chen ;
Liu, Jingjing ;
Yan, Yongke ;
Han, Xingbo ;
Jin, Huiming ;
Wang, Yu ;
Liu, Yi ;
Wu, Changle .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2017, 27 (01) :72-79
[7]   Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries [J].
Choi, Woosung ;
Shin, Heon-Cheol ;
Kim, Ji Man ;
Choi, Jae-Young ;
Yoon, Won-Sub .
JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2020, 11 (01) :1-13
[8]   Improved High Temperature Performance of a Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage Lithium-Ion Batteries by Surface Modification of a Flexible Conductive Nanolayer [J].
Dong, Hongyu ;
Zhang, Yijia ;
Zhang, Shiquan ;
Tang, Panpan ;
Xiao, Xinglu ;
Ma, Mengyue ;
Zhang, Huishuang ;
Yin, Yanhong ;
Wang, Dong ;
Yang, Shuting .
ACS OMEGA, 2019, 4 (01) :185-194
[9]   Relationships between Mn3+ Content, Structural Ordering, Phase Transformation, and Kinetic Properties in LiNixMn2-xO4 Cathode Materials [J].
Duncan, Hugues ;
Hai, Bin ;
Leskes, Michal ;
Grey, Clare P. ;
Chen, Guoying .
CHEMISTRY OF MATERIALS, 2014, 26 (18) :5374-5382
[10]   The cathode-electrolyte interface in the Li-ion battery [J].
Edström, K ;
Gustafsson, T ;
Thomas, JO .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :397-403