Critical size of a nano SnO2 electrode for Li-secondary battery

被引:500
作者
Kim, C
Noh, M
Choi, M
Cho, J [1 ]
Park, B
机构
[1] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul, South Korea
[2] Seoul Natl Univ, Res Ctr Energy Convers & Storage, Seoul, South Korea
[3] Kumoh Natl Inst Technol, Dept Appl Chem, Gumi, South Korea
关键词
D O I
10.1021/cm048003o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SnO2 nanoparticles with different sizes of similar to 3, similar to 4, and similar to 8 nm were synthesized using a hydrothermal method at 110, 150, and 200 degrees C, respectively. The results showed that the similar to 3 nm-sized SnO2 nanoparticles had a superior capacity and cycling stability as compared to the similar to 4 and similar to 8 nm-sized ones. The similar to 3 nm-sized nanoparticles exhibited an initial capacity of 740 mAh/g with negligible capacity fading. The electrochemical properties of these nanoparticles were superior to those of thin-film analogues. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirmed that the similar to 3 nm-sized SnO2 nanoparticles after electrochemical tests did not aggregate into larger Sri clusters, in contrast to those observed with the similar to 4 and similar to 8 nm-sized ones.
引用
收藏
页码:3297 / 3301
页数:5
相关论文
共 27 条
[1]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[2]   Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries [J].
Aurbach, D ;
Nimberger, A ;
Markovsky, B ;
Levi, E ;
Sominski, E ;
Gedanken, A .
CHEMISTRY OF MATERIALS, 2002, 14 (10) :4155-4163
[3]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[4]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[5]   A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AIPO4 nanoparticles [J].
Cho, J ;
Kim, YW ;
Kim, B ;
Lee, JG ;
Park, B .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (14) :1618-1621
[6]  
Cho J, 2001, ANGEW CHEM INT EDIT, V40, P3367, DOI 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO
[7]  
2-A
[8]  
COUTNEY IA, 1997, J ELECTROCHEM SOC, V144, P2045
[9]  
COUTNEY IA, 1999, J ELECTROCHEM SOC, V146, P59
[10]   New anode systems for lithium ion cells [J].
Crosnier, O ;
Brousse, T ;
Devaux, X ;
Fragnaud, P ;
Schleich, DM .
JOURNAL OF POWER SOURCES, 2001, 94 (02) :169-174