eConnectome: A MATLAB toolbox for mapping and imaging of brain functional connectivity

被引:173
作者
He, Bin [1 ,2 ]
Dai, Yakang [1 ]
Astolfi, Laura [3 ,4 ]
Babiloni, Fabio [4 ,5 ]
Yuan, Han [1 ]
Yang, Lin [1 ,2 ]
机构
[1] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Neuroengn, Minneapolis, MN 55455 USA
[3] Univ Roma La Sapienza, Dept Comp Sci & Syst, Rome, Italy
[4] Fdn S Lucia, Rome, Italy
[5] Univ Roma La Sapienza, Dept Physiol & Pharmacol, Rome, Italy
关键词
EEG; ECoG; Source imaging; Functional connectivity; MATLAB; eConnectome; DIRECTED TRANSFER-FUNCTION; HIGH-RESOLUTION EEG; GRANGER CAUSALITY; TIME-SERIES; CORTICAL CONNECTIVITY; PHASE SYNCHRONIZATION; SURROGATE DATA; LOCALIZATION; MODEL; FMRI;
D O I
10.1016/j.jneumeth.2010.11.015
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We have developed a MATLAB-based toolbox, eConnectome (electrophysiological connectome), for mapping and imaging functional connectivity at both the scalp and cortical levels from the electroencephalogram (EEG), as well as from the electrocorticogram (ECoG). Graphical user interfaces were designed for interactive and intuitive use of the toolbox. Major functions of eConnectome include EEG/ECoG preprocessing, scalp spatial mapping, cortical source estimation, connectivity analysis, and visualization. Granger causality measures such as directed transfer function and adaptive directed transfer function were implemented to estimate the directional interactions of brain functional networks, over the scalp and cortical sensor spaces. Cortical current density inverse imaging was implemented using a generic realistic geometry brain-head model from scalp EEGs. Granger causality could be further estimated over the cortical source domain from the inversely reconstructed cortical source signals as derived from the scalp EEG. Users may implement other connectivity estimators in the framework of eConnectome for various applications. The toolbox package is open-source and freely available at http://econnectome.umn.edu under the GNU general public license for noncommercial and academic uses. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 45 条
[1]   AUTOREGRESSIVE MODEL FITTING FOR CONTROL [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1971, 23 (02) :163-&
[2]   Adaptive AR modeling of nonstationary time series by means of Kalman filtering [J].
Arnold, M ;
Miltner, WHR ;
Witte, H ;
Bauer, R ;
Braun, C .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (05) :553-562
[3]   Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG [J].
Astolfi, L ;
Cincotti, F ;
Mattia, D ;
Salinari, S ;
Babiloni, C ;
Basilisco, A ;
Rossini, PM ;
Ding, L ;
Ni, Y ;
He, B ;
Marciani, MG ;
Babiloni, F .
MAGNETIC RESONANCE IMAGING, 2004, 22 (10) :1457-1470
[4]   Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data [J].
Astolfi, L ;
Cincotti, F ;
Mattia, D ;
Babiloni, C ;
Carducci, F ;
Basilisco, A ;
Rossini, PM ;
Salinari, S ;
Ding, L ;
Ni, Y ;
He, B ;
Babiloni, F .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (04) :920-932
[5]   Comparison of different cortical connectivity estimators for high-resolution EEG recordings [J].
Astolfi, Laura ;
Cincotti, Febo ;
Mattia, Donatella ;
Marciani, M. Grazia ;
Baccala, Luiz A. ;
Fallani, Fabrizio de Vico ;
Salinari, Serenella ;
Ursino, Mauro ;
Zavaglia, Melissa ;
Ding, Lei ;
Edgar, J. Christopher ;
Miller, Gregory A. ;
He, Bin ;
Babiloni, Fabio .
HUMAN BRAIN MAPPING, 2007, 28 (02) :143-157
[6]   Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function [J].
Babiloni, F ;
Cincotti, F ;
Babiloni, C ;
Carducci, F ;
Mattia, D ;
Astolfi, L ;
Basilisco, A ;
Rossini, PM ;
Ding, L ;
Ni, Y ;
Cheng, J ;
Christine, K ;
Sweeney, J ;
He, B .
NEUROIMAGE, 2005, 24 (01) :118-131
[7]   Partial directed coherence:: a new concept in neural structure determination [J].
Baccalá, LA ;
Sameshima, K .
BIOLOGICAL CYBERNETICS, 2001, 84 (06) :463-474
[8]   Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality [J].
Brovelli, A ;
Ding, MZ ;
Ledberg, A ;
Chen, YH ;
Nakamura, R ;
Bressler, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (26) :9849-9854
[9]   AUTOMATIC 3D INTERSUBJECT REGISTRATION OF MR VOLUMETRIC DATA IN STANDARDIZED TALAIRACH SPACE [J].
COLLINS, DL ;
NEELIN, P ;
PETERS, TM ;
EVANS, AC .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1994, 18 (02) :192-205
[10]  
Dalal S.S., 2004, NEUROL CLIN NEUROPHY, V52