Hamiltonian flows for a reduced Maxwell-Bloch system with permanent dipole

被引:5
作者
Agrotis, M [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
reduced Maxwell-Bloch equations; Lie algebras; commuting flows; conservation laws;
D O I
10.1016/S0167-2789(03)00158-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We place a reduced Maxwell-Bloch (rMB) system with permanent dipole in a Lie algebraic framework that enables us to reveal a hierarchy of systems in involution, the first of which is the rMB model. This is done in the context of the Adler-Kostant-Symes theorem. We provide the Hamiltonian functions for the commuting flows and establish an infinite number of conservation laws. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 158
页数:18
相关论文
共 16 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   COHERENT PULSE-PROPAGATION, A DISPERSIVE, IRREVERSIBLE PHENOMENON [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (11) :1852-1858
[3]  
ADLER M, 1979, INVENT MATH, V50, P219
[4]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[5]   Complete integrability of the reduced Maxwell-Bloch equations with permanent dipole [J].
Agrotis, M ;
Ercolani, NM ;
Glasgow, SA ;
Moloney, JV .
PHYSICA D, 2000, 138 (1-2) :134-162
[6]   SOLITONS IN NONLINEAR OPTICS .1. MORE ACCURATE DESCRIPTION OF 2PI PULSE IN SELF-INDUCED TRANSPARENCY [J].
EILBECK, JC ;
GIBBON, JD ;
CAUDREY, PJ ;
BULLOUGH, RK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (09) :1337-1347
[7]  
Faddeev L. D., 1987, HAMILTONIAN METHODS
[8]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[9]   KAC-MOODY LIE-ALGEBRAS AND SOLITON-EQUATIONS .2. LAX EQUATIONS ASSOCIATED WITH A1 [J].
FLASCHKA, H ;
NEWELL, AC ;
RATIU, T .
PHYSICA D, 1983, 9 (03) :300-323
[10]   KAC-MOODY LIE-ALGEBRAS AND SOLITON-EQUATIONS .3. STATIONARY EQUATIONS ASSOCIATED WITH A1 [J].
FLASCHKA, H ;
NEWELL, AC ;
RATIU, T .
PHYSICA D, 1983, 9 (03) :324-332