Valorization of Lignin as a Sustainable Component of Structural Materials and Composites: Advances from 2011 to 2019

被引:74
作者
Karunarathna, Menisha S. [1 ]
Smith, Rhett C. [1 ]
机构
[1] Clemson Univ, Dept Chem, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
lignin; polyurethane; phenol formaldehyde resins; sulfur; carbon fibers; CARBON-FIBERS; INVERSE VULCANIZATION; ELEMENTAL SULFUR; OXYPROPYLATION; POLYMERS; WASTE; POLYMERIZATION; MANUFACTURE;
D O I
10.3390/su12020734
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lignin is the most abundant aromatic biopolymer and is the sustainable feedstock most likely to supplant petroleum-derived aromatics and downstream products. Rich in functional groups, lignin is largely peerless in its potential for chemical modification towards attaining target properties. Lignin's crosslinked network structure can be exploited in composites to endow them with remarkable strength, as exemplified in timber and other structural elements of plants. Yet lignin may also be depolymerized, modified, or blended with other polymers. This review focuses on substituting petrochemicals with lignin derivatives, with a particular focus on applications more significant in terms of potential commercialization volume, including polyurethane, phenol-formaldehyde resins, lignin-based carbon fibers, and emergent melt-processable waste-derived materials. This review will illuminate advances from the last eight years in the prospective utilization of such lignin-derived products in a range of application such as adhesives, plastics, automotive components, construction materials, and composites. Particular technical issues associated with lignin processing and emerging alternatives for future developments are discussed.
引用
收藏
页数:15
相关论文
共 72 条
[1]   Preparation of Lignopolyols from Wheat Straw Soda Lignin [J].
Ahvazi, Behzad ;
Wojciechowicz, Olivia ;
Ton-That, Tan-Minh ;
Hawari, Jalal .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2011, 59 (19) :10505-10516
[2]  
Akpan E I., 2019, Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications, P325, DOI DOI 10.1007/978-3-030-18792-7_7
[3]   On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber [J].
Baker, Darren A. ;
Gallego, Nidia C. ;
Baker, Frederick S. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 124 (01) :227-234
[4]  
Brodin I, 2009, THESIS
[5]   Optimization Study of Lignin Oxypropylation in View of the Preparation of Polyurethane Rigid Foams [J].
Cateto, Carolina Andreia ;
Barreiro, Maria Filomena ;
Rodrigues, Alirio Egidio ;
Belgacem, Mohamed Naceur .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (05) :2583-2589
[6]  
Cetin Nihat Sami, 2003, Turkish Journal of Agriculture and Forestry, V27, P183
[7]   Review of current and future softwood kraft lignin process chemistry [J].
Chakar, FS ;
Ragauskas, AJ .
INDUSTRIAL CROPS AND PRODUCTS, 2004, 20 (02) :131-141
[8]   Improved Lignin Polyurethane Properties with Lewis Acid Treatment [J].
Chung, Hoyong ;
Washburn, Newell R. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (06) :2840-2846
[9]  
Chung WJ, 2013, NAT CHEM, V5, P518, DOI [10.1038/NCHEM.1624, 10.1038/nchem.1624]
[10]   Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil [J].
Crockett, Michael P. ;
Evans, Austin M. ;
Worthington, Max J. H. ;
Albuquerque, Ines S. ;
Slattery, Ashley D. ;
Gibson, Christopher T. ;
Campbell, Jonathan A. ;
Lewis, David A. ;
Bernardes, Goncalo J. L. ;
Chalker, Justin M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) :1714-1718