Ultrafast-kinetics, ultralong-cycle-life, bifunctional inorganic open-framework for potassium-ion batteries

被引:18
作者
Bao, Jingze [1 ,2 ,3 ]
Deng, Wenzhuo [1 ,2 ]
Liu, Jiandongyong [1 ,2 ]
Sun, Chuan-Fu [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Key Lab Nanomat, Fuzhou 350002, Fujian, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Battery; Potassium-ion battery; Potassium superionic conductor; Inorganic open-framework; Low strain; Aliovalent substitution; THIN-FILMS; LOW-COST; INTERCALATION; CATHODE; CHALLENGES; ELECTRODES; DIFFUSION; VOLTAGE; KVOPO4;
D O I
10.1016/j.ensm.2021.08.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sluggish solid-state K+-migration kinetics and electrode material degradation represent two critical issues facing K-ion batteries. Here we report a new inorganic-open-framework (IOF) compound K0.76V0.55Nb0.45OPO4 (KVNP, synthesized through aliovalent substitution) which, as a bifunctional electrode material, simultaneously mitigates these issues on both anode and cathode sides. The distinctive IOF crystal structure enables a low K+-migration energy barrier (0.16 eV) even surpassing the Li+ counterpart in state-of-the-art LiCoO2/LiFePO4 (0.21/0.55 eV) and consequently achieves fast-charging capability and high energy efficiency. Equally important, KVNP undergoes exceptionally small lattice-volume changes upon cycling (7.1% on anode and 3.1% on cathode, versus 10% for graphite anode and 6.8% for LiFePO4 cathode in commercial Li-ion batteries). This intrinsic low-strain feature ensures high structural stability against K+-ion (de)intercalation and ultralong cycle lives of > 18 months for both KVNP anode and cathode (versus < 3 months for previously reported IOFs). Aliovalent substitution in IOFs may pave a way for the exploration of fast-charging and long-lifespan K-ion batteries.
引用
收藏
页码:806 / 814
页数:9
相关论文
共 60 条
[1]   High power lithium ion battery materials by computational design [J].
Adams, Stefan ;
Rao, R. Prasada .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08) :1746-1753
[2]   Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes [J].
Adams, Stefan ;
Rao, R. Prasada .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (17) :3210-3216
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems [J].
Betz, Johannes ;
Bieker, Georg ;
Meister, Paul ;
Placke, Tobias ;
Winter, Martin ;
Schmuch, Richard .
ADVANCED ENERGY MATERIALS, 2019, 9 (06)
[5]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn [J].
Biesinger, Mark C. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2010, 257 (03) :887-898
[6]   KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries [J].
Chihara, Kuniko ;
Katogi, Akihiro ;
Kubota, Kei ;
Komaba, Shinichi .
CHEMICAL COMMUNICATIONS, 2017, 53 (37) :5208-5211
[7]   Investigation of the Prussian Blue Analog Co3[Co(CN)6]2 as an Anode Material for Nonaqueous Potassium-Ion Batteries [J].
Deng, Leqing ;
Yang, Zhao ;
Tan, Lulu ;
Zeng, Liang ;
Zhu, Yujie ;
Guo, Lin .
ADVANCED MATERIALS, 2018, 30 (31)
[8]   Self-Templated Formation of P2-type K0.6CoO2 Microspheres for High Reversible Potassium-Ion Batteries [J].
Deng, Tao ;
Fan, Xiulin ;
Luo, Chao ;
Chen, Ji ;
Chen, Long ;
Hou, Singyuk ;
Eidson, Nico ;
Zhou, Xiuquan ;
Wang, Chunsheng .
NANO LETTERS, 2018, 18 (02) :1522-1529
[9]   Tellurium: A High-Volumetric-Capacity Potassium-Ion Battery Electrode Material [J].
Dong, Shuai ;
Yu, Dandan ;
Yang, Jie ;
Jiang, Li ;
Wang, Jiawei ;
Cheng, Liwei ;
Zhou, Yan ;
Yue, Honglei ;
Wang, Hua ;
Guo, Lin .
ADVANCED MATERIALS, 2020, 32 (23)
[10]   Potassium secondary cell based on Prussian blue cathode [J].
Eftekhari, A .
JOURNAL OF POWER SOURCES, 2004, 126 (1-2) :221-228