Understanding the modulation effect and surface chemistry in a heteroatom incorporated graphene-like matrix toward high-rate lithium-sulfur batteries

被引:28
作者
Zhao, Zhenxin [1 ]
Yi, Zonglin [2 ,3 ]
Li, Huijun [1 ]
Pathak, Rajesh [4 ]
Cheng, Xiaoqin [1 ]
Zhou, Junliang [1 ]
Wang, Xiaomin [1 ]
Qiao, Qiquan [5 ]
机构
[1] Taiyuan Univ Technol, Shanxi Key Lab New Energy Mat & Devices, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Inst Coal Chem, CAS Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Argonne Natl Lab, Applied Mat Div, Lemont, IL 60439 USA
[5] Syracuse Univ, Mech & Aerosp Engn, Syracuse, NY 13244 USA
基金
中国国家自然科学基金;
关键词
DOPED CARBON NANOTUBES; CONVERSION; REDUCTION; CATHODE; CO; FRAMEWORK; CAPACITY;
D O I
10.1039/d1nr03390e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The underlying interface effects of sulfur hosts/polysulfides at the molecular level are of great significance to achieve advanced lithium-sulfur batteries. Herein, we systematically study the polysulfide-binding ability and the decomposition energy barrier of Li2S enabled by different kinds of nitrogen (pyridinic N, pyrrolic N and graphitic N) and phosphorus (P-O, P=O and graphitic P) doping and decipher their inherent modulation effect. The doping process helps in forming a graphene-like structure and increases the micropores/mesopores, which can expose more active sites to come into contact with polysulfides. First-principles calculations reveal that the P=O possesses the highest binding energies with polysulfides due to the weakening of the chemical bonds. Besides, P=O as a promoter is beneficial for the free diffusion of lithium ions, and the pyridinic N and pyrrolic N can greatly reduce the kinetic barrier and catalyze the polysulfide conversion. The synergetic effects of nitrogen and phosphorus as bifunctional active centers help in achieving an in situ adsorption-diffusion-conversion process of polysulfides. Benefiting from these features, the graphene-like network achieves superior rate capability (a high reversible capacity of 954 mA h g(-1) at 2C) and long-term stability (an ultralow degradation rate of 0.009% around 800 cycles at 5C). Even at a high sulfur loading of 5.6 mg cm(-2), the cell can deliver an areal capacity of 4.6 mA h cm(-2) at 0.2C.
引用
收藏
页码:14777 / 14784
页数:8
相关论文
共 56 条
[1]   One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage [J].
Bai, Jing ;
Xi, Baojuan ;
Mao, Hongzhi ;
Lin, Yue ;
Ma, Xiaojian ;
Feng, Jinkui ;
Xiong, Shenglin .
ADVANCED MATERIALS, 2018, 30 (35)
[2]   MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries [J].
Chen, Guilin ;
Li, Yijuan ;
Zhong, Wentao ;
Zheng, Fenghua ;
Hu, Junhua ;
Ji, Xiaohong ;
Liu, Weizhen ;
Yang, Chenghao ;
Lin, Zhang ;
Liu, Meilin .
ENERGY STORAGE MATERIALS, 2020, 25 :547-554
[3]   Defective VSe2-Graphene eterostructures Enabling In Situ Electrocatalyst Evolution for Lithium-Sulfur Batteries [J].
Ci, Haina ;
Cai, Jingsheng ;
Ma, Hao ;
Shi, Zixiong ;
Cui, Guang ;
Wang, Menglei ;
Jin, Jia ;
Wei, Nan ;
Lu, Chen ;
Zhao, Wen ;
Sun, Jingyu ;
Liu, Zhongfan .
ACS NANO, 2020, 14 (09) :11929-11938
[4]   N-Doped Hierarchically Porous CNT@C Membranes for Accelerating Polysulfide Redox Conversion for High-Energy Lithium-Sulfur Batteries [J].
Dai, Yan ;
Zheng, Wenji ;
Li, Xiangcun ;
Liu, Anmin ;
Zhang, Wei ;
Jiang, Xiaobin ;
Wu, Xuemei ;
Tao, Jiahao ;
He, Gaohong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (02) :2521-2529
[5]   Dual Dopamine Derived Polydopamine Coated N-Doped Porous Carbon Spheres as a Sulfur Host for High-Performance Lithium-Sulfur Batteries [J].
Fan, Zengjie ;
Ding, Bing ;
Guo, Hongshuai ;
Shi, Minyuan ;
Zhang, Yadi ;
Dong, Shengyang ;
Zhang, Tengfei ;
Dou, Hui ;
Zhang, Xiaogang .
CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (45) :10710-10717
[6]   Boosting capacitive storage of cathode for lithium-ion capacitors: Combining pore structure with P-doping [J].
Gao, Yuan ;
Yang, Zhewei ;
Wang, Yongzhen ;
Wang, Xiaomin .
ELECTROCHIMICA ACTA, 2021, 368
[7]   Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries [J].
Guo Meng-qing ;
Huang Jia-qi ;
Kong Xiang-yi ;
Peng Hong-jie ;
Shut Han ;
Qian Fang-yuan ;
Zhu Lin ;
Zhu Wan-cheng ;
Zhang Qiang .
NEW CARBON MATERIALS, 2016, 31 (03) :352-362
[8]   Biomass-Derived N-Doped Carbon for Efficient Electrocatalytic CO2 Reduction to CO and Zn-CO2 Batteries [J].
Hao, Xiaoqiong ;
An, Xiaowei ;
Patil, Amar M. ;
Wang, Peifen ;
Ma, Xuli ;
Du, Xiao ;
Hao, Xiaogang ;
Abudula, Abuliti ;
Guan, Guoqing .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (03) :3738-3747
[9]   Electrode Design for Lithium-Sulfur Batteries: Problems and Solutions [J].
Huang, Lei ;
Li, Jiaojiao ;
Liu, Bo ;
Li, Yahao ;
Shen, Shenghui ;
Deng, Shengjue ;
Lu, Chengwei ;
Zhang, Wenkui ;
Xia, Yang ;
Pan, Guoxiang ;
Wang, Xiuli ;
Xiong, Qinqin ;
Xia, Xinhui ;
Tu, Jiangping .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (22)
[10]   Design considerations for lithium-sulfur batteries: mass transport of lithium polysulfides [J].
Kim, Seong-Jun ;
Jeoun, Yunseo ;
Park, Jungjin ;
Yu, Seung-Ho ;
Sung, Yung-Eun .
NANOSCALE, 2020, 12 (28) :15466-15472