Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly

被引:42
作者
Cereghetti, Gea [1 ,2 ]
Wilson-Zbinden, Caroline [1 ]
Kissling, Vera M. [1 ,3 ]
Diether, Maren [4 ]
Arm, Alexandra [1 ]
Yoo, Haneul [5 ]
Piazza, Ilaria [4 ,6 ]
Saad, Shady [1 ,7 ]
Picotti, Paola [4 ]
Drummond, D. Allan [5 ]
Sauer, Uwe [4 ]
Dechant, Reinhard [1 ]
Peter, Matthias [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Biol, Inst Biochem, Zurich, Switzerland
[2] Life Sci Zurich, PhD Program Mol Life Sci, Zurich, Switzerland
[3] Life Sci Zurich, PhD Program Biomol Struct & Mech, Zurich, Switzerland
[4] Swiss Fed Inst Technol, Inst Mol Syst Biol, Zurich, Switzerland
[5] Univ Chicago, Dept Biochem & Mol Biol, 920 E 58Th St, Chicago, IL 60637 USA
[6] Max Delbruck Ctr Mol Med, Berlin, Germany
[7] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
SACCHAROMYCES-CEREVISIAE; AGGREGATION; PRINCIPLES; GROWTH; ATP;
D O I
10.1038/s41556-021-00760-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cereghetti et al. report that the glycolytic metabolite fructose-1,6-bisphosphate initiates the disassembly of amyloids formed by the yeast pyruvate kinase Cdc19 to resume ATP production during stress recovery. Cells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood. Here we show that upon stress, the ATP-producing enzyme Cdc19 forms inactive amyloids, and that their rapid re-solubilization is essential to restore ATP production and disassemble SGs in glucose-containing media. Cdc19 re-solubilization is initiated by the glycolytic metabolite fructose-1,6-bisphosphate, which directly binds Cdc19 amyloids, allowing Hsp104 and Ssa2 chaperone recruitment and aggregate re-solubilization. Fructose-1,6-bisphosphate then promotes Cdc19 tetramerization, which boosts its activity to further enhance ATP production and SG disassembly. Together, these results describe a molecular mechanism that is critical for stress recovery and directly couples cellular metabolism with SG dynamics via the regulation of reversible Cdc19 amyloids.
引用
收藏
页码:1085 / +
页数:21
相关论文
共 51 条
[1]   Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis [J].
Anastasiou, Dimitrios ;
Yu, Yimin ;
Israelsen, William J. ;
Jiang, Jian-Kang ;
Boxer, Matthew B. ;
Hong, Bum Soo ;
Tempel, Wolfram ;
Dimov, Svetoslav ;
Shen, Min ;
Jha, Abhishek ;
Yang, Hua ;
Mattaini, Katherine R. ;
Metallo, Christian M. ;
Fiske, Brian P. ;
Courtney, Kevin D. ;
Malstrom, Scott ;
Khan, Tahsin M. ;
Kung, Charles ;
Skoumbourdis, Amanda P. ;
Veith, Henrike ;
Southall, Noel ;
Walsh, Martin J. ;
Brimacombe, Kyle R. ;
Leister, William ;
Lunt, Sophia Y. ;
Johnson, Zachary R. ;
Yen, Katharine E. ;
Kunii, Kaiko ;
Davidson, Shawn M. ;
Christofk, Heather R. ;
Austin, Christopher P. ;
Inglese, James ;
Harris, Marian H. ;
Asara, John M. ;
Stephanopoulos, Gregory ;
Salituro, Francesco G. ;
Jin, Shengfang ;
Dang, Lenny ;
Auld, Douglas S. ;
Park, Hee-Won ;
Cantley, Lewis C. ;
Thomas, Craig J. ;
Heiden, Matthew G. Vander .
NATURE CHEMICAL BIOLOGY, 2012, 8 (10) :839-847
[2]   Stress-specific differences in assembly and composition of stress granules and related foci [J].
Aulas, Anais ;
Fay, Marta M. ;
Lyons, Shawn M. ;
Achorn, Christopher A. ;
Kedersha, Nancy ;
Anderson, Paul ;
Ivanov, Pavel .
JOURNAL OF CELL SCIENCE, 2017, 130 (05) :927-937
[3]   Biomolecular condensates: organizers of cellular biochemistry [J].
Banani, Salman F. ;
Lee, Hyun O. ;
Hyman, Anthony A. ;
Rosen, Michael K. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) :285-298
[4]   Conserved metabolite regulation of stress granule assembly via AdoMet [J].
Begovich, Kyle ;
Vu, Anthony Q. ;
Yeo, Gene ;
Wilhelm, James E. .
JOURNAL OF CELL BIOLOGY, 2020, 219 (08)
[5]   Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex [J].
Bell, W ;
Sun, WN ;
Hohmann, S ;
Wera, S ;
Reinders, A ;
De Virgilio, C ;
Wiemken, A ;
Thevelein, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33311-33319
[6]   TREHALOSE-6-PHOSPHATE, A NEW REGULATOR OF YEAST GLYCOLYSIS THAT INHIBITS HEXOKINASES [J].
BLAZQUEZ, MA ;
LAGUNAS, R ;
GANCEDO, C ;
GANCEDO, JM .
FEBS LETTERS, 1993, 329 (1-2) :51-54
[7]   Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate [J].
Boles, E ;
Schulte, F ;
Miosga, T ;
Freidel, K ;
Schluter, E ;
Zimmermann, FK ;
Hollenberg, CP ;
Heinisch, JJ .
JOURNAL OF BACTERIOLOGY, 1997, 179 (09) :2987-2993
[8]   Chaperone-Facilitated Aggregation of Thermo-Sensitive Proteins Shields Them from Degradation during Heat Stress [J].
Cabrera, Margarita ;
Boronat, Susanna ;
Marte, Luis ;
Vega, Montserrat ;
Perez, Pilar ;
Ayte, Jose ;
Hidalgo, Elena .
CELL REPORTS, 2020, 30 (07) :2430-2443
[9]   The involvement of stress granules in aging and aging-associated diseases [J].
Cao, Xiuling ;
Jin, Xuejiao ;
Liu, Beidong .
AGING CELL, 2020, 19 (04)
[10]   Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ [J].
Cappelletti, Valentina ;
Hauser, Thomas ;
Piazza, Ilaria ;
Pepelnjak, Monika ;
Malinovska, Liliana ;
Fuhrer, Tobias ;
Li, Yaozong ;
Doerig, Christian ;
Boersema, Paul ;
Gillet, Ludovic ;
Grossbach, Jan ;
Dugourd, Aurelien ;
Saez-Rodriguez, Julio ;
Beyer, Andreas ;
Zamboni, Nicola ;
Caflisch, Amedeo ;
de Souza, Natalie ;
Picotti, Paola .
CELL, 2021, 184 (02) :545-+