POINTWISE CONVERGENCE OF ERGODIC AVERAGES ALONG CUBES

被引:20
作者
Assani, I. [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2010年 / 110卷
关键词
Measure Preserve; Bounded Sequence; Pointwise Convergence; Inverse Limit; Ergodic Average;
D O I
10.1007/s11854-010-0006-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, B, mu, T) be a measure preserving system. We prove the pointwise convergence of ergodic averages along cubes of 2(k) - 1 bounded and measurable functions for all k. We show that this result can be derived from estimates about bounded sequences of real numbers and apply these estimates to establish the pointwise convergence of some weighted ergodic averages and ergodic averages along cubes for not necessarily commuting measure preserving transformations.
引用
收藏
页码:241 / 269
页数:29
相关论文
共 17 条
  • [1] [Anonymous], 2003, Wiener Wintner ergodic theorems
  • [2] [Anonymous], 1974, PURE APPL MATH
  • [3] Assani I, 2007, CONTEMP MATH, V430, P1
  • [4] ASSANI I, 2003, POINTWISE CONVERGENC
  • [5] JOINT ERGODICITY AND MIXING
    BEREND, D
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1985, 45 : 255 - 284
  • [6] BERGELSON V, 2000, DESCRIPTIVE SET THEO, P31
  • [7] BOURGAIN J, 1990, J REINE ANGEW MATH, V404, P140
  • [8] Maximal multilinear operators
    Demeter, Ciprian
    Tao, Terence
    Thiele, Christoph
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) : 4989 - 5042
  • [9] Convergence of multiple ergodic averages for some commuting transformations
    Frantzikinakis, N
    Kra, B
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 799 - 809
  • [10] Furstenberg H, 1996, OHIO ST U M, V5, P193