Oriented tree diagram Lie algebras and their abelian ideals

被引:1
|
作者
Luo, Li [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Abelian ideal; tree diagram; solvable Lie algebra; AD-NILPOTENT IDEALS; BOREL SUBALGEBRA; B-IDEALS; COHOMOLOGY;
D O I
10.1007/s10114-010-8455-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce oriented tree diagram Lie algebras which are generalized from Xu's both upward and downward tree diagram Lie algebras, and study certain numerical invariants of these algebras related to abelian ideals.
引用
收藏
页码:2041 / 2058
页数:18
相关论文
共 50 条
  • [1] Oriented Tree Diagram Lie Algebras and Their Abelian Ideals
    Li LUO Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2010, 26 (11) : 2041 - 2058
  • [2] Oriented tree diagram Lie algebras and their abelian ideals
    Li Luo
    Acta Mathematica Sinica, English Series, 2010, 26 : 2041 - 2058
  • [3] Cohomology of Oriented Tree Diagram Lie Algebras
    Luo, Li
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (03) : 965 - 984
  • [4] Lie algebras of derivations with large abelian ideals
    Klymenko, I. S.
    Lysenko, S., V
    Petravchuk, A. P.
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 28 (01): : 123 - 129
  • [5] Abelian subalgebras and ideals of maximal dimension in supersolvable and nilpotent lie algebras
    Towers, David A.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (13) : 2551 - 2568
  • [6] Algorithmic method to obtain abelian subalgebras and ideals in Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (10) : 1388 - 1411
  • [7] Tree diagram Lie algebras of differential operators and evolution partial differential equations
    Xu, Xiaoping
    JOURNAL OF LIE THEORY, 2006, 16 (04) : 691 - 718
  • [8] Abelian subalgebras on Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (04)
  • [9] Ideals in parabolic subalgebras of simple Lie algebras
    Chari, Vyjayanthi
    Dolbin, R. J.
    Ridenour, T.
    SYMMETRY IN MATHEMATICS AND PHYSICS, 2009, 490 : 47 - 60
  • [10] Abelian ideals in a Borel subalgebra of a complex simple Lie algebra
    Ruedi Suter
    Inventiones mathematicae, 2004, 156 : 175 - 221