Synthesis, Characterization, and Non-Covalent Interactions of Palladium(II)-Amino Acid Complexes

被引:4
|
作者
Hobart, David B. [1 ,2 ]
Berg, Michael A. G. [1 ]
Rogers, Hannah M. [1 ]
Merola, Joseph S. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA
[2] Air Liquide Adv Mat, 197 Meister Ave, Branchburg, NJ 08876 USA
来源
MOLECULES | 2021年 / 26卷 / 14期
基金
美国国家科学基金会;
关键词
palladium; chelate; amino acid; hydrogen bonding; non-covalent interaction; X-ray crystallography; AMINO-ACID; MOLECULAR-STRUCTURE; CRYSTAL; PALLADIUM; WATER; MOTIFS; PD(II);
D O I
10.3390/molecules26144331
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The reaction of palladium(II) acetate with acyclic amino acids in acetone/water yields square planar bis-chelated palladium amino acid complexes that exhibit interesting non-covalent interactions. In all cases, complexes were examined by multiple spectroscopic techniques, especially HRMS (high resolution mass spectrometry), IR (infrared spectroscopy), and H-1 NMR (nuclear magnetic resonance) spectroscopy. In some cases, suitable crystals for single crystal X-ray diffraction were able to be grown and the molecular structure was obtained. The molecular geometries of the products are discussed. Except for the alanine complex, all complexes incorporate water molecules into the extended lattice and exhibit N-H center dot center dot center dot O and/or O center dot center dot center dot(HOH)center dot center dot center dot O hydrogen bonding interactions. The non-covalent interactions are discussed in terms of the extended lattice structures exhibited by the structures.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Complexes of zinc(II) chloride and acetate with propargylimidazoles: synthesis, structure and non-covalent interactions
    Irina V. Sterkhova
    Lidiya N. Parshina
    Lyudmila A. Grishchenko
    Tat’yana N. Borodina
    Lyudmila A. Belovezhets
    Valentin A. Semenov
    Structural Chemistry, 2023, 34 : 2249 - 2262
  • [2] Complexes of zinc(II) chloride and acetate with propargylimidazoles: synthesis, structure and non-covalent interactions
    Sterkhova, Irina V.
    Parshina, Lidiya N.
    Grishchenko, Lyudmila A.
    Borodina, Tat'yana N.
    Belovezhets, Lyudmila A.
    Semenov, Valentin A.
    STRUCTURAL CHEMISTRY, 2023, 34 (06) : 2249 - 2262
  • [3] Non-covalent interactions in clathrate complexes
    Lipkowski, Janusz
    Schneider, Hans-Joerg
    JOURNAL OF COORDINATION CHEMISTRY, 2021, 74 (13) : 2128 - 2143
  • [4] Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization
    Nicolle, Laura
    Journot, Celine M. A.
    Gerber-Lemaire, Sandrine
    POLYMERS, 2021, 13 (23)
  • [5] Non-covalent stacking interactions directing the structural and photophysical features of mono- and dinuclear cyclometalated palladium(II) complexes
    Santana, M. D.
    Lopez-Banet, L.
    Sanchez, G.
    Perez, J.
    Perez, E.
    Garcia, L.
    Serrano, J. L.
    Espinosa, A.
    DALTON TRANSACTIONS, 2016, 45 (20) : 8601 - 8613
  • [6] Non-covalent interactions
    Schneider, HJ
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 1997, 10 (05) : 253 - 253
  • [7] Non-covalent Interactions
    Sochneider, H.-J.
    Journal of Physical Organic Chemistry, 10 (05):
  • [8] Non-covalent interactions of uranyl complexes: a theoretical study
    Platts, James A.
    Baker, Robert J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (22) : 15380 - 15388
  • [10] Physicochemical and functional properties of lactoferrin-hyaluronic acid complexes: Effect of non-covalent and covalent interactions
    Li, Moting
    Li, Xueqi
    McClements, David Julian
    Shi, Meirong
    Shang, Qi
    Liu, Xuebo
    Liu, Fuguo
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2021, 151