Differential Complexes in Continuum Mechanics

被引:22
作者
Angoshtari, Arzhang [1 ]
Yavari, Arash [2 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Civil & Environm Engn, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
ELEMENT EXTERIOR CALCULUS; STRESS FUNCTIONS; ELASTICITY;
D O I
10.1007/s00205-014-0806-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some differential complexes in continuum mechanics that involve both symmetric and non-symmetric second-order tensors. In particular, we show that the tensorial analogue of the standard grad-curl-div complex can simultaneously describe the kinematics and the kinetics of motion of a continuum. The relation between this complex and the de Rham complex allows one to readily derive the necessary and sufficient conditions for the compatibility of displacement gradient and the existence of stress functions on non-contractible bodies. We also derive the local compatibility equations in terms of the Green deformation tensor for motions of 2D and 3D bodies, and shells in curved ambient spaces with constant curvatures.
引用
收藏
页码:193 / 220
页数:28
相关论文
共 31 条
[1]   PARALLEL TRANSLATION OF RIEMANNIAN CURVATURE [J].
AMBROSE, W .
ANNALS OF MATHEMATICS, 1956, 64 (02) :337-363
[2]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[3]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[4]  
Bredon G.E., 1993, Topology and Geometry
[5]  
Calabi E., 1961, Proceedings of Symposia in Pure Mathematics, P155
[6]   ON GUNTHERS STRESS FUNCTIONS FOR COUPLE STRESSES [J].
CARLSON, DE .
QUARTERLY OF APPLIED MATHEMATICS, 1967, 25 (02) :139-&
[7]   A new approach to the fundamental theorem of surface theory [J].
Ciarlet, Philippe G. ;
Gratie, Liliana ;
Mardare, Cristinel .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 188 (03) :457-473
[8]  
do Carmo M.P., 1976, Math. Theory Appl.
[9]  
Eastwood Michael., 2000, The Proceedings of the 19th Winter School "Geometry and Physics" (Srni, 1999), P23
[10]   INFINITESIMAL DEFORMATIONS OF LOCALLY SYMMETRIC RIEMANNIAN SPACES .1. [J].
GASQUI, J ;
GOLDSCHMIDT, H .
ADVANCES IN MATHEMATICS, 1983, 48 (03) :205-285