3D isogeometric boundary element analysis and structural shape optimization for Helmholtz acoustic scattering problems

被引:39
作者
Shaaban, Ahmed Mostafa [3 ]
Anitescu, Cosmin [3 ]
Atroshchenko, Elena [4 ]
Rabczuk, Timon [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Bauhaus Univ Weimar, Inst Struct Mech, Weimar, Germany
[4] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW, Australia
关键词
3D; BEM; NURBS; Acoustic scattering; PSO; PARTICLE DIFFERENCE METHOD; STRONG DISCONTINUITY PROBLEMS; BURTON-MILLER FORMULATION; SENSITIVITY-ANALYSIS; NUMERICAL-SOLUTION; GENERAL ALGORITHM; METHOD XIBEM; EQUATION; WAVES; NURBS;
D O I
10.1016/j.cma.2021.113950
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The capability of boundary element methods (BEM) for solving three-dimensional time harmonic Helmholtz acoustic scattering problems is presented in the framework of the isogeometric analysis (IGA). Both the CAD geometry and the physical boundary variables are approximated using Non-uniform Rational B-splines basis functions (NURBS) in an isogeometric setting. A detailed comparison between two BEM methods: the conventional boundary integral equation (CBIE) and Burton-Miller (BM) is provided including the computational cost. The proposed models are enhanced with a modified collocation scheme with offsets to Greville abscissae to avoid placing collocation points at the corners. Placing collocation points on a smooth surface enables accurate evaluation of normals for BM formulation in addition to straightforward prediction of jump-terms and avoids singularities in O(1/r) integrals eliminating the need for polar integration. Furthermore, no additional special treatment is required for the hyper-singular integral while collocating on highly distorted elements, such as those containing sphere poles. Acoustic shape optimization in different mediums (air and water) is performed with Particle Swarm Optimization (PSO) and the results are compared with the benchmark solutions from the literature. The reference solutions are obtained with BM which deals with higher order singularities and gradient-based optimization, and requires more complicated sensitivity analysis. The obtained results indicate that, CBIE with PSO is a feasible alternative (except for a small number of fictitious frequencies) which is easier to implement. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] Isogeometric finite element analysis of interior acoustic problems
    Wu, Haijun
    Ye, Wenjing
    Jiang, Weikang
    APPLIED ACOUSTICS, 2015, 100 : 63 - 73
  • [32] Isogeometric sizing and shape optimization of 3D beams and lattice structures at large deformations
    Weeger, Oliver
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (02)
  • [33] Reduced order isogeometric boundary element methods for CAD-integrated shape optimization in electromagnetic scattering
    Chen, Leilei
    Wang, Zhongwang
    Lian, Haojie
    Ma, Yujing
    Meng, Zhuxuan
    Li, Pei
    Ding, Chensen
    Bordas, Stephane P. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 419
  • [34] Isogeometric structural shape optimization using automatic sensitivity analysis
    Lopez, Jorge
    Anitescu, Cosmin
    Rabczuk, Timon
    APPLIED MATHEMATICAL MODELLING, 2021, 89 : 1004 - 1024
  • [35] Isogeometric boundary element analysis of problems in potential flow
    Beer, Gernot
    Duenser, Christian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 517 - 532
  • [36] Isogeometric analysis and shape optimization via boundary integral
    Li, Kang
    Qian, Xiaoping
    COMPUTER-AIDED DESIGN, 2011, 43 (11) : 1427 - 1437
  • [37] Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in two dimensions
    Liu, Cheng
    Chen, Leilei
    Zhao, Wenchang
    Chen, Haibo
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2017, 85 : 142 - 157
  • [38] Shape optimization of heterogeneous materials based on isogeometric boundary element method
    Sun, Deyong
    Dong, Chunying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 370 (370)
  • [39] A STATIC BOUNDARY ELEMENT ANALYSIS OF 3D ANISOTROPIC ELASTIC PROBLEMS
    Igumnov, L. A.
    Markov, I. P.
    Boev, A., V
    MATERIALS PHYSICS AND MECHANICS, 2019, 42 (04): : 461 - 469
  • [40] Sensitivity analysis of structural-acoustic fully-coupled system using isogeometric boundary element method
    Chen, Xiuyun
    Xu, Yanming
    Zhao, Juan
    Cheng, Ruhui
    Ma, Wenqiang
    FRONTIERS IN PHYSICS, 2022, 10