Codimensions of algebras and growth functions

被引:43
作者
Giambruno, A. [1 ]
Mishchenko, S. [2 ]
Zaicev, M. [3 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Applicaz, I-90123 Palermo, Italy
[2] Ulyanovsk State Univ, Fac Math & Mech, Dept Algebra & Geometr Computat, Ulyanovsk 432700, Russia
[3] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119992, Russia
关键词
PI-algebras; codimension growth;
D O I
10.1016/j.aim.2007.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an algebra over a field F of characteristic zero and let c(n) (A), n = 1, 2,..., be its sequence of codimensions. We prove that if c(n) (A) is exponentially bounded, its exponential growth can be any real number > 1. This is achieved by constructing, for any real number alpha > 1, an F-algebra A(alpha) such that lim(n ->infinity) (n)root c(n)(A alpha) exists and equals alpha. The methods are based on the representation theory of the symmetric group and on properties of infinite Sturmian and periodic words. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1027 / 1052
页数:26
相关论文
共 23 条
[1]  
[Anonymous], 2002, IZVESTIYA ROSSIJSK M
[2]   Graded polynomial identities of matrices [J].
Bahturin, Y ;
Drensky, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 :15-34
[3]  
BAHTURIN YA, 1987, DENTITIES LIE ALGEBR
[4]  
Drensky V., 2000, Graduate Course in Algebra
[5]   Algebras with intermediate growth of the codimensions [J].
Giambruno, A. ;
Mishchenko, S. ;
Zaicev, M. .
ADVANCES IN APPLIED MATHEMATICS, 2006, 37 (03) :360-377
[6]   Exponential codimension growth of PI algebras: An exact estimate [J].
Giambruno, A ;
Zaicev, M .
ADVANCES IN MATHEMATICS, 1999, 142 (02) :221-243
[7]   On codimension growth of finitely generated associative algebras [J].
Giambruno, A ;
Zaicev, M .
ADVANCES IN MATHEMATICS, 1998, 140 (02) :145-155
[8]  
Giambruno A., 2005, MATH SURVEYS MONOGR, V122
[9]  
JAMES G, 1981, ENCY MATH APPL, V16
[10]  
Kemer A., 1988, TRANSL MATH MONOGR, V87